Search Results

Documents authored by Holmgren, Cecilia


Document
Fringe Trees for Random Trees with Given Vertex Degrees

Authors: Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees with given vertex degrees, asymptotically follows a normal distribution. As an application, we establish the same asymptotic normality for random simply generated trees (conditioned Galton-Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the multivariate setting.

Cite as

Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe Trees for Random Trees with Given Vertex Degrees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berzunzaojeda_et_al:LIPIcs.AofA.2024.1,
  author =	{Berzunza Ojeda, Gabriel and Holmgren, Cecilia and Janson, Svante},
  title =	{{Fringe Trees for Random Trees with Given Vertex Degrees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.1},
  URN =		{urn:nbn:de:0030-drops-204369},
  doi =		{10.4230/LIPIcs.AofA.2024.1},
  annote =	{Keywords: Conditioned Galton-Watson trees, fringe trees, simply generated trees, uniformly random trees with given vertex degrees}
}
Document
Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees

Authors: Gabriel Berzunza Ojeda and Cecilia Holmgren

Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)


Abstract
We study the fragmentation process obtained by deleting randomly chosen edges from a critical Galton-Watson tree 𝐭_n conditioned on having n vertices, whose offspring distribution belongs to the domain of attraction of a stable law of index α ∈ (1,2]. This fragmentation process is analogous to that introduced in the works of Aldous, Evans and Pitman (1998), who considered the case of Cayley trees. Our main result establishes that, after rescaling, the fragmentation process of 𝐭_n converges as n → ∞ to the fragmentation process obtained by cutting-down proportional to the length on the skeleton of an α-stable Lévy tree of index α ∈ (1,2]. We further establish that the latter can be constructed by considering the partitions of the unit interval induced by the normalized α-stable Lévy excursion with a deterministic drift studied by Miermont (2001). In particular, this extends the result of Bertoin (2000) on the fragmentation process of the Brownian CRT.

Cite as

Gabriel Berzunza Ojeda and Cecilia Holmgren. Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berzunzaojeda_et_al:LIPIcs.AofA.2022.3,
  author =	{Berzunza Ojeda, Gabriel and Holmgren, Cecilia},
  title =	{{Fragmentation Processes Derived from Conditioned Stable Galton-Watson Trees}},
  booktitle =	{33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-230-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{225},
  editor =	{Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.3},
  URN =		{urn:nbn:de:0030-drops-160898},
  doi =		{10.4230/LIPIcs.AofA.2022.3},
  annote =	{Keywords: Additive coalescent, fragmentation, Galton-Watson trees, spectrally positive stable L\'{e}vy processes, stable L\'{e}vy tree, Prim’s algorithm}
}
Document
The k-Cut Model in Conditioned Galton-Watson Trees

Authors: Gabriel Berzunza, Xing Shi Cai, and Cecilia Holmgren

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
The k-cut number of rooted graphs was introduced by Cai et al. [Cai and Holmgren, 2019] as a generalization of the classical cutting model by Meir and Moon [Meir and Moon, 1970]. In this paper, we show that all moments of the k-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson [Janson, 2006].

Cite as

Gabriel Berzunza, Xing Shi Cai, and Cecilia Holmgren. The k-Cut Model in Conditioned Galton-Watson Trees. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 5:1-5:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berzunza_et_al:LIPIcs.AofA.2020.5,
  author =	{Berzunza, Gabriel and Cai, Xing Shi and Holmgren, Cecilia},
  title =	{{The k-Cut Model in Conditioned Galton-Watson Trees}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{5:1--5:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.5},
  URN =		{urn:nbn:de:0030-drops-120352},
  doi =		{10.4230/LIPIcs.AofA.2020.5},
  annote =	{Keywords: k-cut, cutting, conditioned Galton-Watson trees}
}
Document
Largest Clusters for Supercritical Percolation on Split Trees

Authors: Gabriel Berzunza and Cecilia Holmgren

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We consider the model of random trees introduced by Devroye [Devroye, 1999], the so-called random split trees. The model encompasses many important randomized algorithms and data structures. We then perform supercritical Bernoulli bond-percolation on those trees and obtain a precise weak limit theorem for the sizes of the largest clusters. The approach we develop may be useful for studying percolation on other classes of trees with logarithmic height, for instance, we have also studied the case of complete d-regular trees.

Cite as

Gabriel Berzunza and Cecilia Holmgren. Largest Clusters for Supercritical Percolation on Split Trees. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berzunza_et_al:LIPIcs.AofA.2020.6,
  author =	{Berzunza, Gabriel and Holmgren, Cecilia},
  title =	{{Largest Clusters for Supercritical Percolation on Split Trees}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.6},
  URN =		{urn:nbn:de:0030-drops-120361},
  doi =		{10.4230/LIPIcs.AofA.2020.6},
  annote =	{Keywords: Split trees, random trees, supercritical bond-percolation, cluster size, Poisson measures}
}
Document
Permutations in Binary Trees and Split Trees

Authors: Michael Albert, Cecilia Holmgren, Tony Johansson, and Fiona Skerman

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
We investigate the number of permutations that occur in random node labellings of trees. This is a generalisation of the number of subpermutations occuring in a random permutation. It also generalises some recent results on the number of inversions in randomly labelled trees [Cai et al., 2017]. We consider complete binary trees as well as random split trees a large class of random trees of logarithmic height introduced by Devroye [Devroye, 1998]. Split trees consist of nodes (bags) which can contain balls and are generated by a random trickle down process of balls through the nodes. For complete binary trees we show that asymptotically the cumulants of the number of occurrences of a fixed permutation in the random node labelling have explicit formulas. Our other main theorem is to show that for a random split tree with high probability the cumulants of the number of occurrences are asymptotically an explicit parameter of the split tree. For the proof of the second theorem we show some results on the number of embeddings of digraphs into split trees which may be of independent interest.

Cite as

Michael Albert, Cecilia Holmgren, Tony Johansson, and Fiona Skerman. Permutations in Binary Trees and Split Trees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{albert_et_al:LIPIcs.AofA.2018.9,
  author =	{Albert, Michael and Holmgren, Cecilia and Johansson, Tony and Skerman, Fiona},
  title =	{{Permutations in Binary Trees and Split Trees}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.9},
  URN =		{urn:nbn:de:0030-drops-89025},
  doi =		{10.4230/LIPIcs.AofA.2018.9},
  annote =	{Keywords: random trees, split trees, permutations, inversions, cumulant}
}
Document
Inversions in Split Trees and Conditional Galton-Watson Trees

Authors: Xing Shi Cai, Cecilia Holmgren, Svante Janson, Tony Johansson, and Fiona Skerman

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
We study I(T), the number of inversions in a tree T with its vertices labeled uniformly at random. We first show that the cumulants of I(T) have explicit formulas. Then we consider X_n, the normalized version of I(T_n), for a sequence of trees T_n. For fixed T_n's, we prove a sufficient condition for X_n to converge in distribution. For T_n being split trees [Devroye, 1999], we show that X_n converges to the unique solution of a distributional equation. Finally, when T_n's are conditional Galton-Watson trees, we show that X_n converges to a random variable defined in terms of Brownian excursions. Our results generalize and extend previous work by Panholzer and Seitz [Panholzer and Seitz, 2012].

Cite as

Xing Shi Cai, Cecilia Holmgren, Svante Janson, Tony Johansson, and Fiona Skerman. Inversions in Split Trees and Conditional Galton-Watson Trees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 15:1-15:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{cai_et_al:LIPIcs.AofA.2018.15,
  author =	{Cai, Xing Shi and Holmgren, Cecilia and Janson, Svante and Johansson, Tony and Skerman, Fiona},
  title =	{{Inversions in Split Trees and Conditional Galton-Watson Trees}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{15:1--15:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.15},
  URN =		{urn:nbn:de:0030-drops-89085},
  doi =		{10.4230/LIPIcs.AofA.2018.15},
  annote =	{Keywords: inversions, random trees, split trees, Galton-Watson trees, permutation, cumulant}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail