Search Results

Documents authored by Klesen, Felix


Document
GraphTrials: Visual Proofs of Graph Properties

Authors: Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Graph and network visualization supports exploration, analysis and communication of relational data arising in many domains: from biological and social networks, to transportation and powergrid systems. With the arrival of AI-based question-answering tools, issues of trustworthiness and explainability of generated answers motivate a greater role for visualization. In the context of graphs, we see the need for visualizations that can convince a critical audience that an assertion about the graph under analysis is valid. The requirements for such representations that convey precisely one specific graph property are quite different from standard network visualization criteria which optimize general aesthetics and readability. In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties and a foundation for further research in the area. We present a framework that defines what it means to visually prove a graph property. In the process, we introduce the notion of a visual certificate, that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular, pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented graph. We also discuss the relationships between visual complexity, cognitive load and complexity theory, and propose a classification based on visual proof complexity. Finally, we provide examples of visual certificates for problems in different visual proof complexity classes.

Cite as

Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber. GraphTrials: Visual Proofs of Graph Properties. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.GD.2024.16,
  author =	{F\"{o}rster, Henry and Klesen, Felix and Dwyer, Tim and Eades, Peter and Hong, Seok-Hee and Kobourov, Stephen G. and Liotta, Giuseppe and Misue, Kazuo and Montecchiani, Fabrizio and Pastukhov, Alexander and Schreiber, Falk},
  title =	{{GraphTrials: Visual Proofs of Graph Properties}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.16},
  URN =		{urn:nbn:de:0030-drops-213005},
  doi =		{10.4230/LIPIcs.GD.2024.16},
  annote =	{Keywords: Graph Visualization, Theory of Visualization, Visual Proof}
}
Document
Constrained and Ordered Level Planarity Parameterized by the Number of Levels

Authors: Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The problem Level Planarity asks for a crossing-free drawing of a graph in the plane such that vertices are placed at prescribed y-coordinates (called levels) and such that every edge is realized as a y-monotone curve. In the variant Constrained Level Planarity (CLP), each level y is equipped with a partial order ≺_y on its vertices and in the desired drawing the left-to-right order of vertices on level y has to be a linear extension of ≺_y. Ordered Level Planarity (OLP) corresponds to the special case of CLP where the given partial orders ≺_y are total orders. Previous results by Brückner and Rutter [SODA 2017] and Klemz and Rote [ACM Trans. Alg. 2019] state that both CLP and OLP are NP-hard even in severely restricted cases. In particular, they remain NP-hard even when restricted to instances whose width (the maximum number of vertices that may share a common level) is at most two. In this paper, we focus on the other dimension: we study the parameterized complexity of CLP and OLP with respect to the height (the number of levels). We show that OLP parameterized by the height is complete with respect to the complexity class XNLP, which was first studied by Elberfeld, Stockhusen, and Tantau [Algorithmica 2015] (under a different name) and recently made more prominent by Bodlaender, Groenland, Nederlof, and Swennenhuis [FOCS 2021]. It contains all parameterized problems that can be solved nondeterministically in time f(k)⋅ n^O(1) and space f(k)⋅ log n (where f is a computable function, n is the input size, and k is the parameter). If a problem is XNLP-complete, it lies in XP, but is W[t]-hard for every t. In contrast to the fact that OLP parameterized by the height lies in XP, it turns out that CLP is NP-hard even when restricted to instances of height 4. We complement this result by showing that CLP can be solved in polynomial time for instances of height at most 3.

Cite as

Václav Blažej, Boris Klemz, Felix Klesen, Marie Diana Sieper, Alexander Wolff, and Johannes Zink. Constrained and Ordered Level Planarity Parameterized by the Number of Levels. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 20:1-20:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.SoCG.2024.20,
  author =	{Bla\v{z}ej, V\'{a}clav and Klemz, Boris and Klesen, Felix and Sieper, Marie Diana and Wolff, Alexander and Zink, Johannes},
  title =	{{Constrained and Ordered Level Planarity Parameterized by the Number of Levels}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{20:1--20:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.20},
  URN =		{urn:nbn:de:0030-drops-199652},
  doi =		{10.4230/LIPIcs.SoCG.2024.20},
  annote =	{Keywords: Parameterized Complexity, Graph Drawing, XNLP, XP, W\lbrackt\rbrack-hard, Level Planarity, Planar Poset Diagram, Computational Geometry}
}
Document
Coloring and Recognizing Mixed Interval Graphs

Authors: Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
A mixed interval graph is an interval graph that has, for every pair of intersecting intervals, either an arc (directed arbitrarily) or an (undirected) edge. We are particularly interested in scenarios where edges and arcs are defined by the geometry of intervals. In a proper coloring of a mixed interval graph G, an interval u receives a lower (different) color than an interval v if G contains arc (u,v) (edge {u,v}). Coloring of mixed graphs has applications, for example, in scheduling with precedence constraints; see a survey by Sotskov [Mathematics, 2020]. For coloring general mixed interval graphs, we present a min {ω(G), λ(G)+1}-approximation algorithm, where ω(G) is the size of a largest clique and λ(G) is the length of a longest directed path in G. For the subclass of bidirectional interval graphs (introduced recently for an application in graph drawing), we show that optimal coloring is NP-hard. This was known for general mixed interval graphs. We introduce a new natural class of mixed interval graphs, which we call containment interval graphs. In such a graph, there is an arc (u,v) if interval u contains interval v, and there is an edge {u,v} if u and v overlap. We show that these graphs can be recognized in polynomial time, that coloring them with the minimum number of colors is NP-hard, and that there is a 2-approximation algorithm for coloring.

Cite as

Grzegorz Gutowski, Konstanty Junosza-Szaniawski, Felix Klesen, Paweł Rzążewski, Alexander Wolff, and Johannes Zink. Coloring and Recognizing Mixed Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 36:1-36:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gutowski_et_al:LIPIcs.ISAAC.2023.36,
  author =	{Gutowski, Grzegorz and Junosza-Szaniawski, Konstanty and Klesen, Felix and Rz\k{a}\.{z}ewski, Pawe{\l} and Wolff, Alexander and Zink, Johannes},
  title =	{{Coloring and Recognizing Mixed Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{36:1--36:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.36},
  URN =		{urn:nbn:de:0030-drops-193388},
  doi =		{10.4230/LIPIcs.ISAAC.2023.36},
  annote =	{Keywords: Interval Graphs, Mixed Graphs, Graph Coloring}
}
Document
Visualizing Geophylogenies - Internal and External Labeling with Phylogenetic Tree Constraints

Authors: Jonathan Klawitter, Felix Klesen, Joris Y. Scholl, Thomas C. van Dijk, and Alexander Zaft

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
A geophylogeny is a phylogenetic tree where each leaf (biological taxon) has an associated geographic location (site). To clearly visualize a geophylogeny, the tree is typically represented as a crossing-free drawing next to a map. The correspondence between the taxa and the sites is either shown with matching labels on the map (internal labeling) or with leaders that connect each site to the corresponding leaf of the tree (external labeling). In both cases, a good order of the leaves is paramount for understanding the association between sites and taxa. We define several quality measures for internal labeling and give an efficient algorithm for optimizing them. In contrast, minimizing the number of leader crossings in an external labeling is NP-hard. We show nonetheless that optimal solutions can be found in a matter of seconds on realistic instances using integer linear programming. Finally, we provide several efficient heuristic algorithms and experimentally show them to be near optimal on real-world and synthetic instances.

Cite as

Jonathan Klawitter, Felix Klesen, Joris Y. Scholl, Thomas C. van Dijk, and Alexander Zaft. Visualizing Geophylogenies - Internal and External Labeling with Phylogenetic Tree Constraints. In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{klawitter_et_al:LIPIcs.GIScience.2023.5,
  author =	{Klawitter, Jonathan and Klesen, Felix and Scholl, Joris Y. and van Dijk, Thomas C. and Zaft, Alexander},
  title =	{{Visualizing Geophylogenies - Internal and External Labeling with Phylogenetic Tree Constraints}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.5},
  URN =		{urn:nbn:de:0030-drops-189004},
  doi =		{10.4230/LIPIcs.GIScience.2023.5},
  annote =	{Keywords: geophylogeny, boundary labeling, external labeling, algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail