Search Results

Documents authored by Lichter, Moritz


Document
Supercritical Size-Width Tree-Like Resolution Trade-Offs for Graph Isomorphism

Authors: Christoph Berkholz, Moritz Lichter, and Harry Vinall-Smeeth

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the refutation complexity of graph isomorphism in the tree-like resolution calculus. Torán and Wörz [Jacobo Torán and Florian Wörz, 2023] showed that there is a resolution refutation of narrow width k for two graphs if and only if they can be distinguished in (k+1)-variable first-order logic (FO^{k+1}). While DAG-like narrow width k resolution refutations have size at most n^k, tree-like refutations may be much larger. We show that there are graphs of order n, whose isomorphism can be refuted in narrow width k but only in tree-like size 2^{Ω(n^{k/2})}. This is a supercritical trade-off where bounding one parameter (the narrow width) causes the other parameter (the size) to grow above its worst case. The size lower bound is super-exponential in the formula size and improves a related supercritical trade-off by Razborov [Alexander A. Razborov, 2016]. To prove our result, we develop a new variant of the k-pebble EF-game for FO^k to reason about tree-like refutation size in a similar way as the Prover-Delayer games in proof complexity. We analyze this game on the compressed CFI graphs introduced by Grohe, Lichter, Neuen, and Schweitzer [Martin Grohe et al., 2023]. Using a recent improved robust compressed CFI construction of de Rezende, Fleming, Janett, Nordström, and Pang [Susanna F. de Rezende et al., 2024], we obtain a similar bound for width k (instead of the stronger but less common narrow width) and make the result more robust.

Cite as

Christoph Berkholz, Moritz Lichter, and Harry Vinall-Smeeth. Supercritical Size-Width Tree-Like Resolution Trade-Offs for Graph Isomorphism. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 18:1-18:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.MFCS.2025.18,
  author =	{Berkholz, Christoph and Lichter, Moritz and Vinall-Smeeth, Harry},
  title =	{{Supercritical Size-Width Tree-Like Resolution Trade-Offs for Graph Isomorphism}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{18:1--18:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.18},
  URN =		{urn:nbn:de:0030-drops-241253},
  doi =		{10.4230/LIPIcs.MFCS.2025.18},
  annote =	{Keywords: Proof complexity, Resolution, Width, Tree-like size, Supercritical trade-off, Lower bound, Finite model theory, CFI graphs}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems

Authors: Moritz Lichter and Benedikt Pago

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We show that various recent algorithms for finite-domain constraint satisfaction problems (CSP), which are based on solving their affine integer relaxations, do not solve all tractable and not even all Maltsev CSPs. This rules them out as candidates for a universal polynomial-time CSP algorithm. The algorithms are ℤ-affine k-consistency, BLP+AIP, BA^{k}, and CLAP. We thereby answer a question by Brakensiek, Guruswami, Wrochna, and Živný [Joshua Brakensiek et al., 2020] whether a constant level of BA^{k}solves all tractable CSPs in the negative: Indeed, not even a sublinear level k suffices. We also refute a conjecture by Dalmau and Opršal [Víctor Dalmau and Jakub Opršal, 2024] (LICS 2024) that every CSP is either solved by ℤ-affine k-consistency or admits a Datalog reduction from 3-colorability. For the cohomological k-consistency algorithm, that is also based on affine relaxations, we show that it correctly solves our counterexample but fails on an NP-complete template.

Cite as

Moritz Lichter and Benedikt Pago. Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 166:1-166:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lichter_et_al:LIPIcs.ICALP.2025.166,
  author =	{Lichter, Moritz and Pago, Benedikt},
  title =	{{Limitations of Affine Integer Relaxations for Solving Constraint Satisfaction Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{166:1--166:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.166},
  URN =		{urn:nbn:de:0030-drops-235431},
  doi =		{10.4230/LIPIcs.ICALP.2025.166},
  annote =	{Keywords: constraint satisfaction, affine relaxation, promise CSPs, \mathbb{Z}-affine k-consistency, cohomological k-consistency algorithm, Tseitin, graph isomorphism}
}
Document
Computational Complexity of the Weisfeiler-Leman Dimension

Authors: Moritz Lichter, Simon Raßmann, and Pascal Schweitzer

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
The Weisfeiler-Leman dimension of a graph G is the least number k such that the k-dimensional Weisfeiler-Leman algorithm distinguishes G from every other non-isomorphic graph, or equivalently, the least k such that G is definable in (k+1)-variable first-order logic with counting. The dimension is a standard measure of the descriptive or structural complexity of a graph and recently finds various applications in particular in the context of machine learning. This paper studies the complexity of computing the Weisfeiler-Leman dimension. We observe that deciding whether the Weisfeiler-Leman dimension of G is at most k is NP-hard, even if G is restricted to have 4-bounded color classes. For each fixed k ≥ 2, we give a polynomial-time algorithm that decides whether the Weisfeiler-Leman dimension of a given graph with 5-bounded color classes is at most k. Moreover, we show that for these bounds on the color classes, this is optimal because the problem is PTIME-hard under logspace-uniform AC_0-reductions. Furthermore, for each larger bound c on the color classes and each fixed k ≥ 2, we provide a polynomial-time decision algorithm for the abelian case, that is, for structures of which each color class has an abelian automorphism group. While the graph classes we consider may seem quite restrictive, graphs with 4-bounded abelian colors include CFI-graphs and multipedes, which form the basis of almost all known hard instances and lower bounds related to the Weisfeiler-Leman algorithm.

Cite as

Moritz Lichter, Simon Raßmann, and Pascal Schweitzer. Computational Complexity of the Weisfeiler-Leman Dimension. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lichter_et_al:LIPIcs.CSL.2025.13,
  author =	{Lichter, Moritz and Ra{\ss}mann, Simon and Schweitzer, Pascal},
  title =	{{Computational Complexity of the Weisfeiler-Leman Dimension}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.13},
  URN =		{urn:nbn:de:0030-drops-227707},
  doi =		{10.4230/LIPIcs.CSL.2025.13},
  annote =	{Keywords: Weisfeiler-Leman algorithm, dimension, complexity, coherent configurations}
}
Document
Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability

Authors: Moritz Lichter, Benedikt Pago, and Tim Seppelt

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
Abramsky, Dawar, and Wang (2017) introduced the pebbling comonad for k-variable counting logic and thereby initiated a line of work that imports category theoretic machinery to finite model theory. Such game comonads have been developed for various logics, yielding characterisations of logical equivalences in terms of isomorphisms in the associated co-Kleisli category. We show a first limitation of this approach by studying linear-algebraic logic, which is strictly more expressive than first-order counting logic and whose k-variable logical equivalence relations are known as invertible-map equivalences (IM). We show that there exists no finite-rank comonad on the category of graphs whose co-Kleisli isomorphisms characterise IM-equivalence, answering a question of Ó Conghaile and Dawar (CSL 2021). We obtain this result by ruling out a characterisation of IM-equivalence in terms of homomorphism indistinguishability and employing the Lovász-type theorem for game comonads established by Reggio (2022). Two graphs are homomorphism indistinguishable over a graph class if they admit the same number of homomorphisms from every graph in the class. The IM-equivalences cannot be characterised in this way, neither when counting homomorphisms in the natural numbers, nor in any finite prime field.

Cite as

Moritz Lichter, Benedikt Pago, and Tim Seppelt. Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lichter_et_al:LIPIcs.CSL.2024.36,
  author =	{Lichter, Moritz and Pago, Benedikt and Seppelt, Tim},
  title =	{{Limitations of Game Comonads for Invertible-Map Equivalence via Homomorphism Indistinguishability}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.36},
  URN =		{urn:nbn:de:0030-drops-196799},
  doi =		{10.4230/LIPIcs.CSL.2024.36},
  annote =	{Keywords: finite model theory, graph isomorphism, linear-algebraic logic, homomorphism indistinguishability, game comonads, invertible-map equivalence}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with Counting

Authors: Moritz Lichter

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
At the core of the quest for a logic for Ptime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to tackle this problem is witnessed symmetric choice. It allows for choices from definable orbits certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. When similarly extending pure fixed-point logic (IFP), IFP+WSC+I simulates counting which IFP+WSC fails to do. For IFPC+WSC, it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. In this paper, we separate IFPC+WSC from IFPC+WSC+I by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.

Cite as

Moritz Lichter. Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with Counting. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 133:1-133:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lichter:LIPIcs.ICALP.2023.133,
  author =	{Lichter, Moritz},
  title =	{{Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with Counting}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{133:1--133:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.133},
  URN =		{urn:nbn:de:0030-drops-181858},
  doi =		{10.4230/LIPIcs.ICALP.2023.133},
  annote =	{Keywords: witnessed symmetric choice, interpretation, fixed-point logic, counting, CFI graphs, logic for PTime}
}
Document
Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time

Authors: Moritz Lichter and Pascal Schweitzer

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
In the quest for a logic capturing Ptime the next natural classes of structures to consider are those with bounded color class size. We present a canonization procedure for graphs with dihedral color classes of bounded size in the logic of Choiceless Polynomial Time (CPT), which then captures Ptime on this class of structures. This is the first result of this form for non-abelian color classes. The first step proposes a normal form which comprises a "rigid assemblage". This roughly means that the local automorphism groups form 2-injective 3-factor subdirect products. Structures with color classes of bounded size can be reduced canonization preservingly to normal form in CPT. In the second step, we show that for graphs in normal form with dihedral color classes of bounded size, the canonization problem can be solved in CPT. We also show the same statement for general ternary structures in normal form if the dihedral groups are defined over odd domains.

Cite as

Moritz Lichter and Pascal Schweitzer. Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 31:1-31:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lichter_et_al:LIPIcs.CSL.2021.31,
  author =	{Lichter, Moritz and Schweitzer, Pascal},
  title =	{{Canonization for Bounded and Dihedral Color Classes in Choiceless Polynomial Time}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{31:1--31:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.31},
  URN =		{urn:nbn:de:0030-drops-134650},
  doi =		{10.4230/LIPIcs.CSL.2021.31},
  annote =	{Keywords: Choiceless polynomial time, canonization, relational structures, bounded color class size, dihedral groups}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail