Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)
Rohit Gurjar, Taihei Oki, and Roshan Raj. Fractional Linear Matroid Matching Is in Quasi-NC. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{gurjar_et_al:LIPIcs.ESA.2024.63, author = {Gurjar, Rohit and Oki, Taihei and Raj, Roshan}, title = {{Fractional Linear Matroid Matching Is in Quasi-NC}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {63:1--63:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.63}, URN = {urn:nbn:de:0030-drops-211344}, doi = {10.4230/LIPIcs.ESA.2024.63}, annote = {Keywords: parallel algorithms, hitting set, non-commutative rank, Brascamp-Lieb polytope, algebraic algorithms} }
Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz. Problems on Group-Labeled Matroid Bases. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{horsch_et_al:LIPIcs.ICALP.2024.86, author = {H\"{o}rsch, Florian and Imolay, Andr\'{a}s and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s}, title = {{Problems on Group-Labeled Matroid Bases}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {86:1--86:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.86}, URN = {urn:nbn:de:0030-drops-202299}, doi = {10.4230/LIPIcs.ICALP.2024.86}, annote = {Keywords: matroids, matroid intersection, congruency constraint, exact-weight constraint, additive combinatorics, algebraic algorithm, strongly base orderability} }
Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Taihei Oki. On Solving (Non)commutative Weighted Edmonds' Problem. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 89:1-89:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{oki:LIPIcs.ICALP.2020.89, author = {Oki, Taihei}, title = {{On Solving (Non)commutative Weighted Edmonds' Problem}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {89:1--89:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.89}, URN = {urn:nbn:de:0030-drops-124963}, doi = {10.4230/LIPIcs.ICALP.2020.89}, annote = {Keywords: skew fields, Edmonds' problem, Dieudonn\'{e} determinant, degree computation, Smith - McMillan form, matrix expansion, discrete Legendre conjugacy} }
Feedback for Dagstuhl Publishing