Dániel Garamvölgyi, Ryuhei Mizutani, Taihei Oki, Tamás Schwarcz, Yutaro Yamaguchi. Code for finding a non-SIBO matroid (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@misc{dagstuhl-artifact-23553, title = {{Code for finding a non-SIBO matroid}}, author = {Garamv\"{o}lgyi, D\'{a}niel and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s and Yamaguchi, Yutaro}, note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:ce3aedc8d6702824b0aaf570f3b345e2e24776c1;origin=https://github.com/taiheioki/sibo;visit=swh:1:snp:b12612e562c84d3ca5eb46a9baf151c8e2e2d3a5;anchor=swh:1:rev:79cbfd0a9fbdac083ee3d99fcf40ea4efd878bf8}{\texttt{swh:1:dir:ce3aedc8d6702824b0aaf570f3b345e2e24776c1}} (visited on 2025-06-30)}, url = {https://github.com/taiheioki/sibo}, doi = {10.4230/artifacts.23553}, }
Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Dániel Garamvölgyi, Ryuhei Mizutani, Taihei Oki, Tamás Schwarcz, and Yutaro Yamaguchi. Towards the Proximity Conjecture on Group-Labeled Matroids. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 85:1-85:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{garamvolgyi_et_al:LIPIcs.ICALP.2025.85, author = {Garamv\"{o}lgyi, D\'{a}niel and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s and Yamaguchi, Yutaro}, title = {{Towards the Proximity Conjecture on Group-Labeled Matroids}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {85:1--85:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.85}, URN = {urn:nbn:de:0030-drops-234628}, doi = {10.4230/LIPIcs.ICALP.2025.85}, annote = {Keywords: sparse paving matroid, subsequence-interchangeable base orderability, congruency constraint, multiple labelings} }
Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Yuni Iwamasa, Taihei Oki, and Tasuku Soma. Algorithmic Aspects of Semistability of Quiver Representations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 99:1-99:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{iwamasa_et_al:LIPIcs.ICALP.2025.99, author = {Iwamasa, Yuni and Oki, Taihei and Soma, Tasuku}, title = {{Algorithmic Aspects of Semistability of Quiver Representations}}, booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)}, pages = {99:1--99:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-372-0}, ISSN = {1868-8969}, year = {2025}, volume = {334}, editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.99}, URN = {urn:nbn:de:0030-drops-234762}, doi = {10.4230/LIPIcs.ICALP.2025.99}, annote = {Keywords: quivers, \sigma-semistability, King’s criterion, operator scaling, submodular flow} }
Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)
Rohit Gurjar, Taihei Oki, and Roshan Raj. Fractional Linear Matroid Matching Is in Quasi-NC. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{gurjar_et_al:LIPIcs.ESA.2024.63, author = {Gurjar, Rohit and Oki, Taihei and Raj, Roshan}, title = {{Fractional Linear Matroid Matching Is in Quasi-NC}}, booktitle = {32nd Annual European Symposium on Algorithms (ESA 2024)}, pages = {63:1--63:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-338-6}, ISSN = {1868-8969}, year = {2024}, volume = {308}, editor = {Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.63}, URN = {urn:nbn:de:0030-drops-211344}, doi = {10.4230/LIPIcs.ESA.2024.63}, annote = {Keywords: parallel algorithms, hitting set, non-commutative rank, Brascamp-Lieb polytope, algebraic algorithms} }
Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz. Problems on Group-Labeled Matroid Bases. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{horsch_et_al:LIPIcs.ICALP.2024.86, author = {H\"{o}rsch, Florian and Imolay, Andr\'{a}s and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s}, title = {{Problems on Group-Labeled Matroid Bases}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {86:1--86:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.86}, URN = {urn:nbn:de:0030-drops-202299}, doi = {10.4230/LIPIcs.ICALP.2024.86}, annote = {Keywords: matroids, matroid intersection, congruency constraint, exact-weight constraint, additive combinatorics, algebraic algorithm, strongly base orderability} }
Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)
Taihei Oki. On Solving (Non)commutative Weighted Edmonds' Problem. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 89:1-89:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{oki:LIPIcs.ICALP.2020.89, author = {Oki, Taihei}, title = {{On Solving (Non)commutative Weighted Edmonds' Problem}}, booktitle = {47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)}, pages = {89:1--89:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-138-2}, ISSN = {1868-8969}, year = {2020}, volume = {168}, editor = {Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.89}, URN = {urn:nbn:de:0030-drops-124963}, doi = {10.4230/LIPIcs.ICALP.2020.89}, annote = {Keywords: skew fields, Edmonds' problem, Dieudonn\'{e} determinant, degree computation, Smith - McMillan form, matrix expansion, discrete Legendre conjugacy} }
Feedback for Dagstuhl Publishing