8 Search Results for "Cáceres, Manuel"


Document
Sorting Finite Automata via Partition Refinement

Authors: Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, and Nicola Prezza

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Wheeler nondeterministic finite automata (WNFAs) were introduced in (Gagie et al., TCS 2017) as a powerful generalization of prefix sorting from strings to labeled graphs. WNFAs admit optimal solutions to classic hard problems on labeled graphs and languages such as compression and regular expression matching. The problem of deciding whether a given NFA is Wheeler is known to be NP-complete (Gibney and Thankachan, ESA 2019). Recently, however, Alanko et al. (Information and Computation 2021) showed how to side-step this complexity by switching to preorders: letting Q be the set of states and δ the set of transitions, they provided a O(|δ|⋅|Q|²)-time algorithm computing a totally-ordered partition (i.e. equivalence relation) of the WNFA’s states such that (1) equivalent states recognize the same regular language, and (2) the order of (the classes of) non-equivalent states is consistent with any Wheeler order, when one exists. As a result, the output is a preorder of the states as useful for pattern matching as standard Wheeler orders. Further extensions of this line of work (Cotumaccio et al., SODA 2021 and DCC 2022) generalized these concepts to arbitrary NFAs by introducing co-lex partial preorders: in general, any NFA admits a partial preorder of its states reflecting the co-lexicographic order of their accepted strings; the smaller the width of such preorder is, the faster regular expression matching queries can be performed. To date, the fastest algorithm for computing the smallest-width partial preorder on NFAs runs in O(|δ|² + |Q|^{5/2}) time (Cotumaccio, DCC 2022), while on DFAs the same task can be accomplished in O(min(|Q|²log|Q|, |δ|⋅|Q|)) time (Kim et al., CPM 2023). In this paper, we provide much more efficient solutions to the co-lex order computation problem. Our results are achieved by extending a classic algorithm for the relational coarsest partition refinement problem of Paige and Tarjan to work with ordered partitions. More specifically, we provide a O(|δ|log|Q|)-time algorithm computing a co-lex total preorder when the input is a Wheeler NFA, and an algorithm with the same time complexity computing the smallest-width co-lex partial order of any DFA. In addition, we present implementations of our algorithms and show that they are very efficient also in practice.

Cite as

Ruben Becker, Manuel Cáceres, Davide Cenzato, Sung-Hwan Kim, Bojana Kodric, Francisco Olivares, and Nicola Prezza. Sorting Finite Automata via Partition Refinement. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 15:1-15:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.ESA.2023.15,
  author =	{Becker, Ruben and C\'{a}ceres, Manuel and Cenzato, Davide and Kim, Sung-Hwan and Kodric, Bojana and Olivares, Francisco and Prezza, Nicola},
  title =	{{Sorting Finite Automata via Partition Refinement}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.15},
  URN =		{urn:nbn:de:0030-drops-186684},
  doi =		{10.4230/LIPIcs.ESA.2023.15},
  annote =	{Keywords: Wheeler automata, prefix sorting, pattern matching, graph compression, sorting, partition refinement}
}
Document
Finding Maximal Exact Matches in Graphs

Authors: Nicola Rizzo, Manuel Cáceres, and Veli Mäkinen

Published in: LIPIcs, Volume 273, 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)


Abstract
We study the problem of finding maximal exact matches (MEMs) between a query string Q and a labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of practical alignment methods because of their strong connections to classical metrics. A principled way to speed up chaining is to limit the number of MEMs by considering only MEMs of length at least κ (κ-MEMs). However, on arbitrary input graphs, the problem of finding MEMs cannot be solved in truly sub-quadratic time under SETH (Equi et al., ICALP 2019) even on acyclic graphs. In this paper we show an O(n⋅ L ⋅ d^{L-1} + m + M_{κ,L})-time algorithm finding all κ-MEMs between Q and G spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum degree of a node in G, m = |Q|, and M_{κ,L} is the number of output MEMs. We use this algorithm to develop a κ-MEM finding solution on indexable Elastic Founder Graphs (Equi et al., Algorithmica 2022) running in time O(nH² + m + M_κ), where H is the maximum number of nodes in a block, and M_κ is the total number of κ-MEMs. Our results generalize to the analysis of multiple query strings (MEMs between G and any of the strings). Additionally, we provide some preliminary experimental results showing that the number of graph MEMs is an order of magnitude smaller than the number of string MEMs of the corresponding concatenated collection.

Cite as

Nicola Rizzo, Manuel Cáceres, and Veli Mäkinen. Finding Maximal Exact Matches in Graphs. In 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 273, pp. 10:1-10:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{rizzo_et_al:LIPIcs.WABI.2023.10,
  author =	{Rizzo, Nicola and C\'{a}ceres, Manuel and M\"{a}kinen, Veli},
  title =	{{Finding Maximal Exact Matches in Graphs}},
  booktitle =	{23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)},
  pages =	{10:1--10:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-294-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{273},
  editor =	{Belazzougui, Djamal and Ouangraoua, A\"{i}da},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2023.10},
  URN =		{urn:nbn:de:0030-drops-186364},
  doi =		{10.4230/LIPIcs.WABI.2023.10},
  annote =	{Keywords: Sequence to graph alignment, bidirectional BWT, r-index, suffix tree, founder graphs}
}
Document
Co-Linear Chaining on Pangenome Graphs

Authors: Jyotshna Rajput, Ghanshyam Chandra, and Chirag Jain

Published in: LIPIcs, Volume 273, 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)


Abstract
Pangenome reference graphs are useful in genomics because they compactly represent the genetic diversity within a species, a capability that linear references lack. However, efficiently aligning sequences to these graphs with complex topology and cycles can be challenging. The seed-chain-extend based alignment algorithms use co-linear chaining as a standard technique to identify a good cluster of exact seed matches that can be combined to form an alignment. Recent works show how the co-linear chaining problem can be efficiently solved for acyclic pangenome graphs by exploiting their small width [Makinen et al., TALG'19] and how incorporating gap cost in the scoring function improves alignment accuracy [Chandra and Jain, RECOMB'23]. However, it remains open on how to effectively generalize these techniques for general pangenome graphs which contain cycles. Here we present the first practical formulation and an exact algorithm for co-linear chaining on cyclic pangenome graphs. We rigorously prove the correctness and computational complexity of the proposed algorithm. We evaluate the empirical performance of our algorithm by aligning simulated long reads from the human genome to a cyclic pangenome graph constructed from 95 publicly available haplotype-resolved human genome assemblies. While the existing heuristic-based algorithms are faster, the proposed algorithm provides a significant advantage in terms of accuracy.

Cite as

Jyotshna Rajput, Ghanshyam Chandra, and Chirag Jain. Co-Linear Chaining on Pangenome Graphs. In 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 273, pp. 12:1-12:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{rajput_et_al:LIPIcs.WABI.2023.12,
  author =	{Rajput, Jyotshna and Chandra, Ghanshyam and Jain, Chirag},
  title =	{{Co-Linear Chaining on Pangenome Graphs}},
  booktitle =	{23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-294-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{273},
  editor =	{Belazzougui, Djamal and Ouangraoua, A\"{i}da},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2023.12},
  URN =		{urn:nbn:de:0030-drops-186389},
  doi =		{10.4230/LIPIcs.WABI.2023.12},
  annote =	{Keywords: Sequence alignment, variation graph, genome sequencing, path cover}
}
Document
Track A: Algorithms, Complexity and Games
Minimum Chain Cover in Almost Linear Time

Authors: Manuel Cáceres

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A minimum chain cover (MCC) of a k-width directed acyclic graph (DAG) G = (V, E) is a set of k chains (paths in the transitive closure) of G such that every vertex appears in at least one chain in the cover. The state-of-the-art solutions for MCC run in time Õ(k(|V|+|E|)) [Mäkinen et at., TALG], O(T_{MF}(|E|) + k|V|), O(k²|V| + |E|) [Cáceres et al., SODA 2022], Õ(|V|^{3/2} + |E|) [Kogan and Parter, ICALP 2022] and Õ(T_{MCF}(|E|) + √k|V|) [Kogan and Parter, SODA 2023], where T_{MF}(|E|) and T_{MCF}(|E|) are the running times for solving maximum flow (MF) and minimum-cost flow (MCF), respectively. In this work we present an algorithm running in time O(T_{MF}(|E|) + (|V|+|E|)log k). By considering the recent result for solving MF [Chen et al., FOCS 2022] our algorithm is the first running in almost linear time. Moreover, our techniques are deterministic and derive a deterministic near-linear time algorithm for MCC if the same is provided for MF. At the core of our solution we use a modified version of the mergeable dictionaries [Farach and Thorup, Algorithmica], [Iacono and Özkan, ICALP 2010] data structure boosted with the SIZE-SPLIT operation and answering queries in amortized logarithmic time, which can be of independent interest.

Cite as

Manuel Cáceres. Minimum Chain Cover in Almost Linear Time. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 31:1-31:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{caceres:LIPIcs.ICALP.2023.31,
  author =	{C\'{a}ceres, Manuel},
  title =	{{Minimum Chain Cover in Almost Linear Time}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{31:1--31:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.31},
  URN =		{urn:nbn:de:0030-drops-180834},
  doi =		{10.4230/LIPIcs.ICALP.2023.31},
  annote =	{Keywords: Minimum chain cover, directed acyclic graph, minimum flow, flow decomposition, mergeable dictionaries, amortized running time}
}
Document
Parameterized Algorithms for String Matching to DAGs: Funnels and Beyond

Authors: Manuel Cáceres

Published in: LIPIcs, Volume 259, 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)


Abstract
The problem of String Matching to Labeled Graphs (SMLG) asks to find all the paths in a labeled graph G = (V, E) whose spellings match that of an input string S ∈ Σ^m. SMLG can be solved in quadratic O(m|E|) time [Amir et al., JALG 2000], which was proven to be optimal by a recent lower bound conditioned on SETH [Equi et al., ICALP 2019]. The lower bound states that no strongly subquadratic time algorithm exists, even if restricted to directed acyclic graphs (DAGs). In this work we present the first parameterized algorithms for SMLG on DAGs. Our parameters capture the topological structure of G. All our results are derived from a generalization of the Knuth-Morris-Pratt algorithm [Park and Kim, CPM 1995] optimized to work in time proportional to the number of prefix-incomparable matches. To obtain the parameterization in the topological structure of G, we first study a special class of DAGs called funnels [Millani et al., JCO 2020] and generalize them to k-funnels and the class ST_k. We present several novel characterizations and algorithmic contributions on both funnels and their generalizations.

Cite as

Manuel Cáceres. Parameterized Algorithms for String Matching to DAGs: Funnels and Beyond. In 34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 259, pp. 7:1-7:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{caceres:LIPIcs.CPM.2023.7,
  author =	{C\'{a}ceres, Manuel},
  title =	{{Parameterized Algorithms for String Matching to DAGs: Funnels and Beyond}},
  booktitle =	{34th Annual Symposium on Combinatorial Pattern Matching (CPM 2023)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-276-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{259},
  editor =	{Bulteau, Laurent and Lipt\'{a}k, Zsuzsanna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2023.7},
  URN =		{urn:nbn:de:0030-drops-179619},
  doi =		{10.4230/LIPIcs.CPM.2023.7},
  annote =	{Keywords: string matching, parameterized algorithms, FPT inside P, string algorithms, graph algorithms, directed acyclic graphs, labeled graphs, funnels}
}
Document
Width Helps and Hinders Splitting Flows

Authors: Manuel Cáceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan, Brendan Mumey, Romeo Rizzi, Alexandru I. Tomescu, and Lucia Williams

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow X on directed graph G into weighted source-to-sink paths whose superposition equals X. We focus on a common formulation of the problem where the path weights must be non-negative integers and also on a new variant where these weights can be negative. We show that, for acyclic graphs, considering the width of the graph (the minimum number of s-t paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the non-negative version, we show that a popular heuristic is a O(log |X|)-approximation (|X| being the total flow of X) on graphs satisfying two properties related to the width (satisfied by e.g., series-parallel graphs), and strengthen its worst-case approximation ratio from Ω(√m) to Ω(m / log m) for sparse graphs, where m is the number of edges in the graph. For the negative version, we give a (⌈log ║X║⌉+1)-approximation (║X║ being the maximum absolute value of X on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary flows (║X║ ≤ 1) into at most width paths. We also disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.

Cite as

Manuel Cáceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan, Brendan Mumey, Romeo Rizzi, Alexandru I. Tomescu, and Lucia Williams. Width Helps and Hinders Splitting Flows. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 31:1-31:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{caceres_et_al:LIPIcs.ESA.2022.31,
  author =	{C\'{a}ceres, Manuel and Cairo, Massimo and Grigorjew, Andreas and Khan, Shahbaz and Mumey, Brendan and Rizzi, Romeo and Tomescu, Alexandru I. and Williams, Lucia},
  title =	{{Width Helps and Hinders Splitting Flows}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.31},
  URN =		{urn:nbn:de:0030-drops-169695},
  doi =		{10.4230/LIPIcs.ESA.2022.31},
  annote =	{Keywords: Flow decomposition, approximation algorithms, graph width}
}
Document
Optimizing Safe Flow Decompositions in DAGs

Authors: Shahbaz Khan and Alexandru I. Tomescu

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Network flow is one of the most studied combinatorial optimization problems having innumerable applications. Any flow on a directed acyclic graph G having n vertices and m edges can be decomposed into a set of O(m) paths. The applications of such a flow decomposition range from network routing to the assembly of biological sequences. However, in some applications, each solution (decomposition) corresponds to some particular data that generated the original flow. Given the possibility of multiple optimal solutions, no optimization criterion ensures the identification of the correct decomposition. Hence, recently flow decomposition was studied [RECOMB22] in the Safe and Complete framework, particularly for RNA Assembly. The proposed solution reported all the safe paths, i.e., the paths which are subpath of every possible solution of flow decomposition. They presented a characterization of the safe paths, resulting in an O(mn+out_R) time algorithm to compute all safe paths, where out_R is the size of the raw output reporting each safe path explicitly. They also showed that out_R can be Ω(mn²) in the worst case but O(m) in the best case. Hence, they further presented an algorithm to report a concise representation of the output out_C in O(mn+out_C) time, where out_C can be Ω(mn) in the worst case but O(m) in the best case. In this work, we study how different safe paths interact, resulting in optimal output-sensitive algorithms requiring O(m+out_R) and O(m+out_C) time for computing the existing representations of the safe paths. Our algorithm uses a novel data structure called Path Tries, which may be of independent interest. Further, we propose a new characterization of the safe paths resulting in the optimal representation of safe paths out_O, which can be Ω(mn) in the worst case but requires optimal O(1) space for every safe path reported. We also present a near-optimal algorithm to compute all the safe paths in O(m+out_Olog n) time. The new representation also establishes tighter worst case bounds Θ(mn²) and Θ(mn) bounds for out_R and out_C (along with out_O), respectively. Overall we further develop the theory of safe and complete solutions for the flow decomposition problem, giving an optimal algorithm for the explicit representation, and a near-optimal algorithm for the optimal representation of the safe paths.

Cite as

Shahbaz Khan and Alexandru I. Tomescu. Optimizing Safe Flow Decompositions in DAGs. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 72:1-72:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.ESA.2022.72,
  author =	{Khan, Shahbaz and Tomescu, Alexandru I.},
  title =	{{Optimizing Safe Flow Decompositions in DAGs}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{72:1--72:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.72},
  URN =		{urn:nbn:de:0030-drops-170101},
  doi =		{10.4230/LIPIcs.ESA.2022.72},
  annote =	{Keywords: safety, flows, networks, directed acyclic graphs}
}
Document
Chaining with Overlaps Revisited

Authors: Veli Mäkinen and Kristoffer Sahlin

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
Chaining algorithms aim to form a semi-global alignment of two sequences based on a set of anchoring local alignments as input. Depending on the optimization criteria and the exact definition of a chain, there are several O(n log n) time algorithms to solve this problem optimally, where n is the number of input anchors. In this paper, we focus on a formulation allowing the anchors to overlap in a chain. This formulation was studied by Shibuya and Kurochkin (WABI 2003), but their algorithm comes with no proof of correctness. We revisit and modify their algorithm to consider a strict definition of precedence relation on anchors, adding the required derivation to convince on the correctness of the resulting algorithm that runs in O(n log² n) time on anchors formed by exact matches. With the more relaxed definition of precedence relation considered by Shibuya and Kurochkin or when anchors are non-nested such as matches of uniform length (k-mers), the algorithm takes O(n log n) time. We also establish a connection between chaining with overlaps and the widely studied longest common subsequence problem.

Cite as

Veli Mäkinen and Kristoffer Sahlin. Chaining with Overlaps Revisited. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 25:1-25:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{makinen_et_al:LIPIcs.CPM.2020.25,
  author =	{M\"{a}kinen, Veli and Sahlin, Kristoffer},
  title =	{{Chaining with Overlaps Revisited}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{25:1--25:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.25},
  URN =		{urn:nbn:de:0030-drops-121500},
  doi =		{10.4230/LIPIcs.CPM.2020.25},
  annote =	{Keywords: Sparse Dynamic Programming, Chaining, Maximal Exact Matches, Longest Common Subsequence}
}
  • Refine by Author
  • 5 Cáceres, Manuel
  • 2 Khan, Shahbaz
  • 2 Mäkinen, Veli
  • 2 Tomescu, Alexandru I.
  • 1 Becker, Ruben
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Pattern matching
  • 3 Theory of computation → Graph algorithms analysis
  • 3 Theory of computation → Network flows
  • 3 Theory of computation → Sorting and searching
  • 2 Applied computing → Genomics
  • Show More...

  • Refine by Keyword
  • 2 directed acyclic graphs
  • 1 Chaining
  • 1 FPT inside P
  • 1 Flow decomposition
  • 1 Longest Common Subsequence
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 5 2023
  • 2 2022
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail