9 Search Results for "Chen, Jing"


Document
Deadline Miss Early Detection Method for DAG Tasks Considering Variable Execution Time

Authors: Hayate Toba and Takuya Azumi

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Autonomous driving systems must guarantee safety, which requires strict real-time performance. A series of processes, from sensor data input to vehicle control command output, must be completed by the end-to-end deadline. If a deadline miss occurs, the system must quickly transition to a safe state. To improve safety, an early detection method for deadline misses was proposed. The proposed method represents the autonomous driving system as a directed acyclic graph (DAG) with a mixture of timer-driven and event-driven nodes. It assigns appropriate time constraints for each node based on the end-to-end deadline. However, the existing methods assume the worst-case execution time (WCET) for calculating the time constraints of each node and do not consider the execution time variation of nodes, making the detection of deadline misses pessimistic. This paper proposes a deadline miss early detection method to determine the possibility of deadline misses quantitatively at the beginning of each node execution in a DAG task. It calculates the time constraints of each node using probabilistic execution time, which treats execution time as a random variable. Experimental evaluation shows that the proposed method reduces pessimism, which is a problem of conventional methods using WCET, and then achieves more accurate early detection of deadline misses. The evaluation also indicates that the execution time of static analysis required for deadline miss early detection is within a practical level.

Cite as

Hayate Toba and Takuya Azumi. Deadline Miss Early Detection Method for DAG Tasks Considering Variable Execution Time. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{toba_et_al:LIPIcs.ECRTS.2024.8,
  author =	{Toba, Hayate and Azumi, Takuya},
  title =	{{Deadline Miss Early Detection Method for DAG Tasks Considering Variable Execution Time}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{8:1--8:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.8},
  URN =		{urn:nbn:de:0030-drops-203116},
  doi =		{10.4230/LIPIcs.ECRTS.2024.8},
  annote =	{Keywords: Autonomous driving system, deadline miss early detection, DAG, event-driven task, timer-driven task, probabilistic execution time}
}
Document
GCAPS: GPU Context-Aware Preemptive Priority-Based Scheduling for Real-Time Tasks

Authors: Yidi Wang, Cong Liu, Daniel Wong, and Hyoseung Kim

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Scheduling real-time tasks that utilize GPUs with analyzable guarantees poses a significant challenge due to the intricate interaction between CPU and GPU resources, as well as the complex GPU hardware and software stack. While much research has been conducted in the real-time research community, several limitations persist, including the absence or limited availability of GPU-level preemption, extended blocking times, and/or the need for extensive modifications to program code. In this paper, we propose GCAPS, a GPU Context-Aware Preemptive Scheduling approach for real-time GPU tasks. Our approach exerts control over GPU context scheduling at the device driver level and enables preemption of GPU execution based on task priorities by simply adding one-line macros to GPU segment boundaries. In addition, we provide a comprehensive response time analysis of GPU-using tasks for both our proposed approach as well as the default Nvidia GPU driver scheduling that follows a work-conserving round-robin policy. Through empirical evaluations and case studies, we demonstrate the effectiveness of the proposed approaches in improving taskset schedulability and response time. The results highlight significant improvements over prior work as well as the default scheduling approach, with up to 40% higher schedulability, while also achieving predictable worst-case behavior on Nvidia Jetson embedded platforms.

Cite as

Yidi Wang, Cong Liu, Daniel Wong, and Hyoseung Kim. GCAPS: GPU Context-Aware Preemptive Priority-Based Scheduling for Real-Time Tasks. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 14:1-14:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ECRTS.2024.14,
  author =	{Wang, Yidi and Liu, Cong and Wong, Daniel and Kim, Hyoseung},
  title =	{{GCAPS: GPU Context-Aware Preemptive Priority-Based Scheduling for Real-Time Tasks}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{14:1--14:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.14},
  URN =		{urn:nbn:de:0030-drops-203170},
  doi =		{10.4230/LIPIcs.ECRTS.2024.14},
  annote =	{Keywords: Real-time systems, GPU scheduling}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Survey
Towards Representing Processes and Reasoning with Process Descriptions on the Web

Authors: Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
We work towards a vocabulary to represent processes and temporal logic specifications as graph-structured data. Different fields use incompatible terminologies for describing essentially the same process-related concepts. In addition, processes can be represented from different perspectives and levels of abstraction: both state-centric and event-centric perspectives offer distinct insights into the underlying processes. In this work, we strive to unify the representation of processes and related concepts by leveraging the power of knowledge graphs. We survey approaches to representing processes and reasoning with process descriptions from different fields and provide a selection of scenarios to help inform the scope of a unified representation of processes. We focus on processes that can be executed and observed via web interfaces. We propose to provide a representation designed to combine state-centric and event-centric perspectives while incorporating temporal querying and reasoning capabilities on temporal logic specifications. A standardised vocabulary and representation for processes and temporal specifications would contribute towards bridging the gap between the terminologies from different fields and fostering the broader application of methods involving temporal logics, such as formal verification and program synthesis.

Cite as

Andreas Harth, Tobias Käfer, Anisa Rula, Jean-Paul Calbimonte, Eduard Kamburjan, and Martin Giese. Towards Representing Processes and Reasoning with Process Descriptions on the Web. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 1:1-1:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{harth_et_al:TGDK.2.1.1,
  author =	{Harth, Andreas and K\"{a}fer, Tobias and Rula, Anisa and Calbimonte, Jean-Paul and Kamburjan, Eduard and Giese, Martin},
  title =	{{Towards Representing Processes and Reasoning with Process Descriptions on the Web}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:32},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.1},
  URN =		{urn:nbn:de:0030-drops-198583},
  doi =		{10.4230/TGDK.2.1.1},
  annote =	{Keywords: Process modelling, Process ontology, Temporal logic, Web services}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Non-Cooperative Rational Interactive Proofs

Authors: Jing Chen, Samuel McCauley, and Shikha Singh

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Interactive-proof games model the scenario where an honest party interacts with powerful but strategic provers, to elicit from them the correct answer to a computational question. Interactive proofs are increasingly used as a framework to design protocols for computation outsourcing. Existing interactive-proof games largely fall into two categories: either as games of cooperation such as multi-prover interactive proofs and cooperative rational proofs, where the provers work together as a team; or as games of conflict such as refereed games, where the provers directly compete with each other in a zero-sum game. Neither of these extremes truly capture the strategic nature of service providers in outsourcing applications. How to design and analyze non-cooperative interactive proofs is an important open problem. In this paper, we introduce a mechanism-design approach to define a multi-prover interactive-proof model in which the provers are rational and non-cooperative - they act to maximize their expected utility given others' strategies. We define a strong notion of backwards induction as our solution concept to analyze the resulting extensive-form game with imperfect information. We fully characterize the complexity of our proof system under different utility gap guarantees. (At a high level, a utility gap of u means that the protocol is robust against provers that may not care about a utility loss of 1/u.) We show, for example, that the power of non-cooperative rational interactive proofs with a polynomial utility gap is exactly equal to the complexity class P^{NEXP}.

Cite as

Jing Chen, Samuel McCauley, and Shikha Singh. Non-Cooperative Rational Interactive Proofs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ESA.2019.29,
  author =	{Chen, Jing and McCauley, Samuel and Singh, Shikha},
  title =	{{Non-Cooperative Rational Interactive Proofs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.29},
  URN =		{urn:nbn:de:0030-drops-111508},
  doi =		{10.4230/LIPIcs.ESA.2019.29},
  annote =	{Keywords: non-cooperative game theory, extensive-form games with imperfect information, refined sequential equilibrium, rational proofs, interactive proofs}
}
Document
Brief Announcement
Brief Announcement: Bayesian Auctions with Efficient Queries

Authors: Jing Chen, Bo Li, Yingkai Li, and Pinyan Lu

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
Generating good revenue is one of the most important problems in Bayesian auction design, and many (approximately) optimal dominant-strategy incentive compatible (DSIC) Bayesian mechanisms have been constructed for various auction settings. However, most existing studies do not consider the complexity for the seller to carry out the mechanism. It is assumed that the seller knows "each single bit" of the distributions and is able to optimize perfectly based on the entire distributions. Unfortunately this is a strong assumption and may not hold in reality: for example, when the value distributions have exponentially large supports or do not have succinct representations. In this work we consider, for the first time, the query complexity of Bayesian mechanisms. We only allow the seller to have limited oracle accesses to the players' value distributions, via quantile queries and value queries. For a large class of auction settings, we prove logarithmic lower-bounds for the query complexity for any DSIC Bayesian mechanism to be of any constant approximation to the optimal revenue. For single-item auctions and multi-item auctions with unit-demand or additive valuation functions, we prove tight upper-bounds via efficient query schemes, without requiring the distributions to be regular or have monotone hazard rate. Thus, in those auction settings the seller needs to access much less than the full distributions in order to achieve approximately optimal revenue.

Cite as

Jing Chen, Bo Li, Yingkai Li, and Pinyan Lu. Brief Announcement: Bayesian Auctions with Efficient Queries. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 108:1-108:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2018.108,
  author =	{Chen, Jing and Li, Bo and Li, Yingkai and Lu, Pinyan},
  title =	{{Brief Announcement: Bayesian Auctions with Efficient Queries}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{108:1--108:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.108},
  URN =		{urn:nbn:de:0030-drops-91124},
  doi =		{10.4230/LIPIcs.ICALP.2018.108},
  annote =	{Keywords: The complexity of Bayesian mechanisms, quantile queries, value queries}
}
Document
Efficient Approximations for the Online Dispersion Problem

Authors: Jing Chen, Bo Li, and Yingkai Li

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
The dispersion problem has been widely studied in computational geometry and facility location, and is closely related to the packing problem. The goal is to locate n points (e.g., facilities or persons) in a k-dimensional polytope, so that they are far away from each other and from the boundary of the polytope. In many real-world scenarios however, the points arrive and depart at different times, and decisions must be made without knowing future events. Therefore we study, for the first time in the literature, the online dispersion problem in Euclidean space. There are two natural objectives when time is involved: the all-time worst-case (ATWC) problem tries to maximize the minimum distance that ever appears at any time; and the cumulative distance (CD) problem tries to maximize the integral of the minimum distance throughout the whole time interval. Interestingly, the online problems are highly non-trivial even on a segment. For cumulative distance, this remains the case even when the problem is time-dependent but offline, with all the arriving and departure times given in advance. For the online ATWC problem on a segment, we construct a deterministic polynomial-time algorithm which is (2ln2+epsilon)-competitive, where epsilon>0 can be arbitrarily small and the algorithm's running time is polynomial in 1/epsilon. We show this algorithm is actually optimal. For the same problem in a square, we provide a 1.591-competitive algorithm and a 1.183 lower-bound. Furthermore, for arbitrary k-dimensional polytopes with k>=2, we provide a 2/(1-epsilon)-competitive algorithm and a 7/6 lower-bound. All our lower-bounds come from the structure of the online problems and hold even when computational complexity is not a concern. Interestingly, for the offline CD problem in arbitrary k-dimensional polytopes, we provide a polynomial-time black-box reduction to the online ATWC problem, and the resulting competitive ratio increases by a factor of at most 2. Our techniques also apply to online dispersion problems with different boundary conditions.

Cite as

Jing Chen, Bo Li, and Yingkai Li. Efficient Approximations for the Online Dispersion Problem. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2017.11,
  author =	{Chen, Jing and Li, Bo and Li, Yingkai},
  title =	{{Efficient Approximations for the Online Dispersion Problem}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.11},
  URN =		{urn:nbn:de:0030-drops-74002},
  doi =		{10.4230/LIPIcs.ICALP.2017.11},
  annote =	{Keywords: dispersion, online algorithms, geometric optimization, packing, competitive algorithms}
}
  • Refine by Author
  • 3 Chen, Jing
  • 2 Calbimonte, Jean-Paul
  • 2 Li, Bo
  • 2 Li, Yingkai
  • 1 Allen, Bradley P.
  • Show More...

  • Refine by Classification
  • 2 Computer systems organization → Real-time systems
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Computing methodologies → Temporal reasoning
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Algorithmic game theory and mechanism design
  • Show More...

  • Refine by Keyword
  • 1 Applications of logics
  • 1 Autonomous driving system
  • 1 Continuous query processing
  • 1 DAG
  • 1 Databases
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 6 2024
  • 1 2017
  • 1 2018
  • 1 2019