7 Search Results for "Cheriyan, Joseph"


Document
Track A: Algorithms, Complexity and Games
Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions

Authors: Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation ratio of two for connectivity augmentation problems where the connectivity requirements can be specified by uncrossable functions. They state: "Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar... A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems." Our main result proves a 16-approximation ratio via the primal-dual method for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions have a laminar support. We present applications of our main result to three network-design problems. 1) A 16-approximation algorithm for augmenting the family of small cuts of a graph G. The previous best approximation ratio was O(log |V(G)|). 2) A 16⋅⌈k/u_min⌉-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given an undirected graph G = (V,E) with edge costs c ∈ ℚ_{≥0}^E and edge capacities u ∈ ℤ_{≥0}^E, find a minimum cost subset of the edges F ⊆ E such that the capacity across any cut in (V,F) is at least k; u_min (respectively, u_max) denote the minimum (respectively, maximum) capacity of an edge in E, and w.l.o.g. u_max ≤ k. The previous best approximation ratio was min(O(log|V|), k, 2u_max). 3) A 20-approximation algorithm for the model of (p,2)-Flexible Graph Connectivity. The previous best approximation ratio was O(log|V(G)|), where G denotes the input graph.

Cite as

Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 15:1-15:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ICALP.2023.15,
  author =	{Bansal, Ishan and Cheriyan, Joseph and Grout, Logan and Ibrahimpur, Sharat},
  title =	{{Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.15},
  URN =		{urn:nbn:de:0030-drops-180678},
  doi =		{10.4230/LIPIcs.ICALP.2023.15},
  annote =	{Keywords: Approximation algorithms, Edge-connectivity of graphs, f-Connectivity problem, Flexible Graph Connectivity, Minimum cuts, Network design, Primal-dual method, Small cuts}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Network Design in Non-Uniform Fault Models

Authors: Chandra Chekuri and Rhea Jain

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Classical network design models, such as the Survivable Network Design problem (SNDP), are (partly) motivated by robustness to faults under the assumption that any subset of edges upto a specific number can fail. We consider non-uniform fault models where the subset of edges that fail can be specified in different ways. Our primary interest is in the flexible graph connectivity model [Adjiashvili, 2013; Adjiashvili et al., 2020; Adjiashvili et al., 2022; Boyd et al., 2023], in which the edge set is partitioned into safe and unsafe edges. Given parameters p,q ≥ 1, the goal is to find a cheap subgraph that remains p-connected even after the failure of q unsafe edges. We also discuss the bulk-robust model [Adjiashvili et al., 2015; Adjiashvili, 2015] and the relative survivable network design model [Dinitz et al., 2022]. While SNDP admits a 2-approximation [K. Jain, 2001], the approximability of problems in these more complex models is much less understood even in special cases. We make two contributions. Our first set of results are in the flexible graph connectivity model. Motivated by a conjecture that a constant factor approximation is feasible when p and q are fixed, we consider two special cases. For the s-t case we obtain an approximation ratio that depends only on p,q whenever p+q > pq/2 which includes (p,2) and (2,q) for all p,q ≥ 1. For the global connectivity case we obtain an O(q) approximation for (2,q), and an O(p) approximation for (p,2) and (p,3) for any p ≥ 1, and for (p,4) when p is even. These are based on an augmentation framework and decomposing the families of cuts that need to be covered into a small number of uncrossable families. Our second result is a poly-logarithmic approximation for a generalization of the bulk-robust model when the "width" of the given instance (the maximum number of edges that can fail in any particular scenario) is fixed. Via this, we derive corresponding approximations for the flexible graph connectivity model and the relative survivable network design model. We utilize a recent framework due to Chen et al. [Chen et al., 2022] that was designed for handling group connectivity.

Cite as

Chandra Chekuri and Rhea Jain. Approximation Algorithms for Network Design in Non-Uniform Fault Models. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 36:1-36:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chekuri_et_al:LIPIcs.ICALP.2023.36,
  author =	{Chekuri, Chandra and Jain, Rhea},
  title =	{{Approximation Algorithms for Network Design in Non-Uniform Fault Models}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.36},
  URN =		{urn:nbn:de:0030-drops-180885},
  doi =		{10.4230/LIPIcs.ICALP.2023.36},
  annote =	{Keywords: non-uniform faults, network design, approximation algorithm}
}
Document
An Improved Approximation Algorithm for the Matching Augmentation Problem

Authors: Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We present a 5/3-approximation algorithm for the matching augmentation problem (MAP): given a multi-graph with edges of cost either zero or one such that the edges of cost zero form a matching, find a 2-edge connected spanning subgraph (2-ECSS) of minimum cost. A 7/4-approximation algorithm for the same problem was presented recently, see Cheriyan, et al., "The matching augmentation problem: a 7/4-approximation algorithm," Math. Program., 182(1):315-354, 2020. Our improvement is based on new algorithmic techniques, and some of these may lead to advances on related problems.

Cite as

Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. An Improved Approximation Algorithm for the Matching Augmentation Problem. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 38:1-38:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cheriyan_et_al:LIPIcs.ISAAC.2021.38,
  author =	{Cheriyan, Joseph and Cummings, Robert and Dippel, Jack and Zhu, Jasper},
  title =	{{An Improved Approximation Algorithm for the Matching Augmentation Problem}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{38:1--38:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.38},
  URN =		{urn:nbn:de:0030-drops-154714},
  doi =		{10.4230/LIPIcs.ISAAC.2021.38},
  annote =	{Keywords: 2-Edge connected graph, 2-edge covers, approximation algorithms, connectivity augmentation, forest augmentation problem, matching augmentation problem, network design}
}
Document
Approximation Algorithms for Flexible Graph Connectivity

Authors: Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We present approximation algorithms for several network design problems in the model of Flexible Graph Connectivity (Adjiashvili, Hommelsheim and Mühlenthaler, "Flexible Graph Connectivity", Math. Program. pp. 1-33 (2021), IPCO 2020: pp. 13-26). In an instance of the Flexible Graph Connectivity (FGC) problem, we have an undirected connected graph G = (V,E), a partition of E into a set of safe edges S and a set of unsafe edges U, and nonnegative costs {c_e}_{e ∈ E} on the edges. A subset F ⊆ E of edges is feasible for FGC if for any unsafe edge e ∈ F ∩ U, the subgraph (V,F⧵{e}) is connected. The algorithmic goal is to find a (feasible) solution F that minimizes c(F) = ∑_{e ∈ F} c_e. We present a simple 2-approximation algorithm for FGC via a reduction to the minimum-cost r-out 2-arborescence problem. This improves upon the 2.527-approximation algorithm of Adjiashvili et al. For integers p ≥ 1 and q ≥ 0, the (p,q)-FGC problem is a generalization of FGC where we seek a minimum-cost subgraph H = (V,F) that remains p-edge connected against the failure of any set of at most q unsafe edges; that is, for any set F' ⊆ U with |F'| ≤ q, H-F' = (V, F ⧵ F') should be p-edge connected. Note that FGC corresponds to the (1,1)-FGC problem. We give approximation algorithms for two important special cases of (p,q)-FGC: (a) Our 2-approximation algorithm for FGC extends to a (k+1)-approximation algorithm for the (1,k)-FGC problem. (b) We present a 4-approximation algorithm for the (k,1)-FGC problem. For the unweighted FGC problem, where each edge has unit cost, we give a 16/11-approximation algorithm. This improves on the result of Adjiashvili et al. for this problem. The (p,q)-FGC model with p = 1 or q ≤ 1 can be cast as the Capacitated k-Connected Subgraph problem which is a special case of the well-known Capacitated Network Design problem. We denote the former problem by Cap-k-ECSS. An instance of this problem consists of an undirected graph G = (V,E), nonnegative integer edge-capacities {u_e}_{e ∈ E}, nonnegative edge-costs {c_e}_{e ∈ E}, and a positive integer k. The goal is to find a minimum-cost edge-set F ⊆ E such that every (non-trivial) cut of the capacitated subgraph H(V,F,u) has capacity at least k. We give a min(k, 2max_{e ∈ E} u_e)-approximation algorithm for this problem.

Cite as

Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation Algorithms for Flexible Graph Connectivity. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 9:1-9:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{boyd_et_al:LIPIcs.FSTTCS.2021.9,
  author =	{Boyd, Sylvia and Cheriyan, Joseph and Haddadan, Arash and Ibrahimpur, Sharat},
  title =	{{Approximation Algorithms for Flexible Graph Connectivity}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.9},
  URN =		{urn:nbn:de:0030-drops-155206},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.9},
  annote =	{Keywords: Approximation Algorithms, Combinatorial Optimization, Network Design, Edge-Connectivity of Graphs, Reliability of Networks}
}
Document
APPROX
A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case

Authors: Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahimpur, Zoltán Szigeti, and Lu Wang

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Given a connected undirected graph G ̅ on n vertices, and non-negative edge costs c, the 2ECM problem is that of finding a 2-edge connected spanning multisubgraph of G ̅ of minimum cost. The natural linear program (LP) for 2ECM, which coincides with the subtour LP for the Traveling Salesman Problem on the metric closure of G ̅, gives a lower bound on the optimal cost. For instances where this LP is optimized by a half-integral solution x, Carr and Ravi (1998) showed that the integrality gap is at most 4/3: they show that the vector 4/3 x dominates a convex combination of incidence vectors of 2-edge connected spanning multisubgraphs of G ̅. We present a simpler proof of the result due to Carr and Ravi by applying an extension of Lovász’s splitting-off theorem. Our proof naturally leads to a 4/3-approximation algorithm for half-integral instances. Given a half-integral solution x to the LP for 2ECM, we give an O(n²)-time algorithm to obtain a 2-edge connected spanning multisubgraph of G ̅ whose cost is at most 4/3 c^T x.

Cite as

Sylvia Boyd, Joseph Cheriyan, Robert Cummings, Logan Grout, Sharat Ibrahimpur, Zoltán Szigeti, and Lu Wang. A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 61:1-61:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{boyd_et_al:LIPIcs.APPROX/RANDOM.2020.61,
  author =	{Boyd, Sylvia and Cheriyan, Joseph and Cummings, Robert and Grout, Logan and Ibrahimpur, Sharat and Szigeti, Zolt\'{a}n and Wang, Lu},
  title =	{{A 4/3-Approximation Algorithm for the Minimum 2-Edge Connected Multisubgraph Problem in the Half-Integral Case}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{61:1--61:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.61},
  URN =		{urn:nbn:de:0030-drops-126643},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.61},
  annote =	{Keywords: 2-Edge Connectivity, Approximation Algorithms, Subtour LP for TSP}
}
Document
Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs

Authors: Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and Kunihiro Wasa

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
This paper investigates induced Steiner subgraphs as a variant of the classical Steiner trees, so as to compactly represent the (exponentially many) Steiner trees sharing the same underlying induced subgraph. We prove that the enumeration of all (inclusion-minimal) induced Steiner subgraphs is harder than the well-known Hypergraph Transversal enumeration problem if the number of terminals is not fixed. When the number of terminals is fixed, we propose a polynomial delay algorithm for listing all induced Steiner subgraphs of minimum size. We also propose a polynomial delay algorithm for listing the set of minimal induced Steiner subgraphs when the number of terminals is 3.

Cite as

Alessio Conte, Roberto Grossi, Mamadou Moustapha Kanté, Andrea Marino, Takeaki Uno, and Kunihiro Wasa. Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 73:1-73:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{conte_et_al:LIPIcs.MFCS.2019.73,
  author =	{Conte, Alessio and Grossi, Roberto and Kant\'{e}, Mamadou Moustapha and Marino, Andrea and Uno, Takeaki and Wasa, Kunihiro},
  title =	{{Listing Induced Steiner Subgraphs as a Compact Way to Discover Steiner Trees in Graphs}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{73:1--73:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.73},
  URN =		{urn:nbn:de:0030-drops-110174},
  doi =		{10.4230/LIPIcs.MFCS.2019.73},
  annote =	{Keywords: Graph algorithms, enumeration, listing and counting, Steiner trees, induced subgraphs}
}
Document
Parameterized Complexity Dichotomy for Steiner Multicut

Authors: Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We consider the Steiner Multicut problem, which asks, given an undirected graph G, a collection T = \{T_{1},...,T_{t}}, T_i \subseteq V(G), of terminal sets of size at most p, and an integer k, whether there is a set S of at most k edges or nodes such that of each set T_{i} at least one pair of terminals is in different connected components of G \ S. This problem generalizes several well-studied graph cut problems, in particular the Multicut problem, which corresponds to the case p = 2. The Multicut problem was recently shown to be fixed-parameter tractable for parameter k [Marx and Razgon, Bousquet et al., STOC 2011]. The question whether this result generalizes to Steiner Multicut motivates the present work. We answer the question that motivated this work, and in fact provide a dichotomy of the parameterized complexity of Steiner Multicut on general graphs. That is, for any combination of k, t, p, and the treewidth tw(G) as constant, parameter, or unbounded, and for all versions of the problem (edge deletion and node deletion with and without deletable terminals), we prove either that the problem is fixed-parameter tractable or that the problem is hard (W[1]-hard or even (para-)NP-complete). Among the many results in the paper, we highlight that: - The edge deletion version of Steiner Multicut is fixed-parameter tractable for parameter k+t on general graphs (but has no polynomial kernel, even on trees). - In contrast, both node deletion versions of Steiner Multicut are W[1]-hard for the parameter k+t on general graphs. - All versions of Steiner Multicut are W[1]-hard for the parameter k, even when p=3 and the graph is a tree plus one node. Since we allow k, t, p, and tw(G) to be any constants, our characterization includes a dichotomy for Steiner Multicut on trees (for tw(G) = 1) as well as a polynomial time versus NP-hardness dichotomy (by restricting k,t,p,tw(G) to constant or unbounded).

Cite as

Karl Bringmann, Danny Hermelin, Matthias Mnich, and Erik Jan van Leeuwen. Parameterized Complexity Dichotomy for Steiner Multicut. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 157-170, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.STACS.2015.157,
  author =	{Bringmann, Karl and Hermelin, Danny and Mnich, Matthias and van Leeuwen, Erik Jan},
  title =	{{Parameterized Complexity Dichotomy for Steiner Multicut}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{157--170},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.157},
  URN =		{urn:nbn:de:0030-drops-49115},
  doi =		{10.4230/LIPIcs.STACS.2015.157},
  annote =	{Keywords: graph cut problems, Steiner cut, fixed-parameter tractability}
}
  • Refine by Author
  • 4 Cheriyan, Joseph
  • 3 Ibrahimpur, Sharat
  • 2 Boyd, Sylvia
  • 2 Cummings, Robert
  • 2 Grout, Logan
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Routing and network design problems
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Graph enumeration
  • 1 Mathematics of computing → Paths and connectivity problems

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 network design
  • 1 2-Edge Connectivity
  • 1 2-Edge connected graph
  • 1 2-edge covers
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2021
  • 2 2023
  • 1 2015
  • 1 2019
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail