10 Search Results for "Hu, Wei"


Document
Greedy Heuristics for Judicious Hypergraph Partitioning

Authors: Noah Wahl and Lars Gottesbüren

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We investigate the efficacy of greedy heuristics for the judicious hypergraph partitioning problem. In contrast to balanced partitioning problems, the goal of judicious hypergraph partitioning is to minimize the maximum load over all blocks of the partition. We devise strategies for initial partitioning and FM-style post-processing. In combination with a multilevel scheme, they beat the previous state-of-the-art solver - based on greedy set covers - in both running time (two to four orders of magnitude) and solution quality (18% to 45%). A major challenge that makes local greedy approaches difficult to use for this problem is the high frequency of zero-gain moves, for which we present and evaluate counteracting mechanisms.

Cite as

Noah Wahl and Lars Gottesbüren. Greedy Heuristics for Judicious Hypergraph Partitioning. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 17:1-17:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wahl_et_al:LIPIcs.SEA.2023.17,
  author =	{Wahl, Noah and Gottesb\"{u}ren, Lars},
  title =	{{Greedy Heuristics for Judicious Hypergraph Partitioning}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{17:1--17:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.17},
  URN =		{urn:nbn:de:0030-drops-183674},
  doi =		{10.4230/LIPIcs.SEA.2023.17},
  annote =	{Keywords: hypergraph partitioning, local search algorithms, load balancing, local search}
}
Document
Higher-Dimensional Timed and Hybrid Automata

Authors: Uli Fahrenberg

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We introduce a new formalism of higher-dimensional timed automata, based on Pratt and van Glabbeek’s higher-dimensional automata and Alur and Dill’s timed automata. We prove that their reachability is PSPACE-complete and can be decided using zone-based algorithms. We also extend the setting to higher-dimensional hybrid automata.The interest of our formalism is in modeling systems which exhibit both real-time behavior and concurrency. Other existing formalisms for real-time modeling identify concurrency and interleaving, which, as we shall argue, is problematic.

Cite as

Uli Fahrenberg. Higher-Dimensional Timed and Hybrid Automata. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 03:1-03:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{fahrenberg:LITES.8.2.3,
  author =	{Fahrenberg, Uli},
  title =	{{Higher-Dimensional Timed and Hybrid Automata}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{03:1--03:16},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Fahrenberg, Uli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.3},
  doi =		{10.4230/LITES.8.2.3},
  annote =	{Keywords: timed automaton, higher-dimensional automaton, precubical set, real time, non-interleaving concurrency, hybrid automaton}
}
Document
Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness

Authors: Martin Knoche, Stefan Hörmann, and Gerhard Rigoll

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Many face recognition approaches expect the input images to have similar image resolution. However, in real-world applications, the image resolution varies due to different image capture mechanisms or sources, affecting the performance of face recognition systems. This work first analyzes the image resolution susceptibility of modern face recognition. Face verification on the very popular LFW dataset drops from 99.23% accuracy to almost 55% when image dimensions of both images are reduced to arguable very poor resolution. With cross-resolution image pairs (one HR and one LR image), face verification accuracy is even worse. This characteristic is investigated more in-depth by analyzing the feature distances utilized for face verification. To increase the robustness, we propose two training strategies applied to a state-of-the-art face recognition model: 1) Training with 50% low resolution images within each batch and 2) using the cosine distance loss between high and low resolution features in a siamese network structure. Both methods significantly boost face verification accuracy for matching training and testing image resolutions. Training a network with different resolutions simultaneously instead of adding only one specific low resolution showed improvements across all resolutions and made a single model applicable to unknown resolutions. However, models trained for one particular low resolution perform better when using the exact resolution for testing. We improve the face verification accuracy from 96.86% to 97.72% on the popular LFW database with uniformly distributed image dimensions between 112 × 112 px and 5 × 5 px. Our approaches improve face verification accuracy even more from 77.56% to 87.17% for distributions focusing on lower images resolutions. Lastly, we propose specific image dimension sets focusing on high, mid, and low resolution for five well-known datasets to benchmark face verification accuracy in cross-resolution scenarios.

Cite as

Martin Knoche, Stefan Hörmann, and Gerhard Rigoll. Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 01:1-01:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{knoche_et_al:LITES.8.1.1,
  author =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  title =	{{Susceptibility to Image Resolution in Face Recognition and Training Strategies to Enhance Robustness}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{01:1--01:20},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Knoche, Martin and H\"{o}rmann, Stefan and Rigoll, Gerhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.1},
  doi =		{10.4230/LITES.8.1.1},
  annote =	{Keywords: recognition, resolution, cross, face, identification}
}
Document
Micro- and Macroscopic Road Traffic Analysis using Drone Image Data

Authors: Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
The current development in the drone technology, alongside with machine learning based image processing, open new possibilities for various applications. Thus, the market volume is expected to grow rapidly over the next years. The goal of this paper is to demonstrate the capabilities and limitations of drone based image data processing for the purpose of road traffic analysis. In the first part a method for generating microscopic traffic data is proposed. More precisely, the state of vehicles and the resulting trajectories are estimated. The method is validated by conducting experiments with reference sensors and proofs to achieve precise vehicle state estimation results. It is also shown, how the computational effort can be reduced by incorporating the tracking information into a neural network. A discussion on current limitations supplements the findings. By collecting a large number of vehicle trajectories, macroscopic statistics, such as traffic flow and density can be obtained from the data. In the second part, a publicly available drone based data set is analyzed to evaluate the suitability for macroscopic traffic modeling. The results show that the method is well suited for gaining detailed information about macroscopic statistics, such as traffic flow dependent time headway or lane change occurrences. In conclusion, this paper presents methods to exploit the remarkable opportunities of drone based image processing for joint macro- and microscopic traffic analysis.

Cite as

Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch. Micro- and Macroscopic Road Traffic Analysis using Drone Image Data. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 02:1-02:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kruber_et_al:LITES.8.1.2,
  author =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  title =	{{Micro- and Macroscopic Road Traffic Analysis using Drone Image Data}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{02:1--02:27},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.2},
  doi =		{10.4230/LITES.8.1.2},
  annote =	{Keywords: traffic data analysis, trajectory data, drone image data}
}
Document
HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology

Authors: Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
Convolutional neural networks (CNNs) have produced unprecedented accuracy for many computer vision problems in the recent past. In power and compute-constrained embedded platforms, deploying modern CNNs can present many challenges. Most CNN architectures do not run in real-time due to the high number of computational operations involved during the inference phase. This emphasizes the role of CNN optimization techniques in early design space exploration. To estimate their efficacy in satisfying the target constraints, existing techniques are either hardware (HW) agnostic, pseudo-HW-aware by considering parameter and operation counts, or HW-aware through inflexible hardware-in-the-loop (HIL) setups. In this work, we introduce HW-Flow, a framework for optimizing and exploring CNN models based on three levels of hardware abstraction: Coarse, Mid and Fine. Through these levels, CNN design and optimization can be iteratively refined towards efficient execution on the target hardware platform. We present HW-Flow in the context of CNN pruning by augmenting a reinforcement learning agent with key metrics to understand the influence of its pruning actions on the inference hardware. With 2× reduction in energy and latency, we prune ResNet56, ResNet50, and DeepLabv3 with minimal accuracy degradation on the CIFAR-10, ImageNet, and CityScapes datasets, respectively.

Cite as

Manoj-Rohit Vemparala, Nael Fasfous, Alexander Frickenstein, Emanuele Valpreda, Manfredi Camalleri, Qi Zhao, Christian Unger, Naveen-Shankar Nagaraja, Maurizio Martina, and Walter Stechele. HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 03:1-03:30, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{vemparala_et_al:LITES.8.1.3,
  author =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  title =	{{HW-Flow: A Multi-Abstraction Level HW-CNN Codesign Pruning Methodology}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{03:1--03:30},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Vemparala, Manoj-Rohit and Fasfous, Nael and Frickenstein, Alexander and Valpreda, Emanuele and Camalleri, Manfredi and Zhao, Qi and Unger, Christian and Nagaraja, Naveen-Shankar and Martina, Maurizio and Stechele, Walter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.3},
  doi =		{10.4230/LITES.8.1.3},
  annote =	{Keywords: Convolutional Neural Networks, Optimization, Hardware Modeling, Pruning}
}
Document
Enumeration Algorithms for Conjunctive Queries with Projection

Authors: Shaleen Deep, Xiao Hu, and Paraschos Koutris

Published in: LIPIcs, Volume 186, 24th International Conference on Database Theory (ICDT 2021)


Abstract
We investigate the enumeration of query results for an important subset of CQs with projections, namely star and path queries. The task is to design data structures and algorithms that allow for efficient enumeration with delay guarantees after a preprocessing phase. Our main contribution is a series of results based on the idea of interleaving precomputed output with further join processing to maintain delay guarantees, which maybe of independent interest. In particular, we design combinatorial algorithms that provide instance-specific delay guarantees in linear preprocessing time. These algorithms improve upon the currently best known results. Further, we show how existing results can be improved upon by using fast matrix multiplication. We also present {new} results involving tradeoff between preprocessing time and delay guarantees for enumeration of path queries that contain projections. CQs with projection where the join attribute is projected away is equivalent to boolean matrix multiplication. Our results can therefore be also interpreted as sparse, output-sensitive matrix multiplication with delay guarantees.

Cite as

Shaleen Deep, Xiao Hu, and Paraschos Koutris. Enumeration Algorithms for Conjunctive Queries with Projection. In 24th International Conference on Database Theory (ICDT 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 186, pp. 14:1-14:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{deep_et_al:LIPIcs.ICDT.2021.14,
  author =	{Deep, Shaleen and Hu, Xiao and Koutris, Paraschos},
  title =	{{Enumeration Algorithms for Conjunctive Queries with Projection}},
  booktitle =	{24th International Conference on Database Theory (ICDT 2021)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-179-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{186},
  editor =	{Yi, Ke and Wei, Zhewei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2021.14},
  URN =		{urn:nbn:de:0030-drops-137229},
  doi =		{10.4230/LIPIcs.ICDT.2021.14},
  annote =	{Keywords: Query result enumeration, joins, ranking}
}
Document
Independent Range Sampling, Revisited Again

Authors: Peyman Afshani and Jeff M. Phillips

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We revisit the range sampling problem: the input is a set of points where each point is associated with a real-valued weight. The goal is to store them in a structure such that given a query range and an integer k, we can extract k independent random samples from the points inside the query range, where the probability of sampling a point is proportional to its weight. This line of work was initiated in 2014 by Hu, Qiao, and Tao and it was later followed up by Afshani and Wei. The first line of work mostly studied unweighted but dynamic version of the problem in one dimension whereas the second result considered the static weighted problem in one dimension as well as the unweighted problem in 3D for halfspace queries. We offer three main results and some interesting insights that were missed by the previous work: We show that it is possible to build efficient data structures for range sampling queries if we allow the query time to hold in expectation (the first result), or obtain efficient worst-case query bounds by allowing the sampling probability to be approximately proportional to the weight (the second result). The third result is a conditional lower bound that shows essentially one of the previous two concessions is needed. For instance, for the 3D range sampling queries, the first two results give efficient data structures with near-linear space and polylogarithmic query time whereas the lower bound shows with near-linear space the worst-case query time must be close to n^{2/3}, ignoring polylogarithmic factors. Up to our knowledge, this is the first such major gap between the expected and worst-case query time of a range searching problem.

Cite as

Peyman Afshani and Jeff M. Phillips. Independent Range Sampling, Revisited Again. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 4:1-4:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2019.4,
  author =	{Afshani, Peyman and Phillips, Jeff M.},
  title =	{{Independent Range Sampling, Revisited Again}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.4},
  URN =		{urn:nbn:de:0030-drops-104088},
  doi =		{10.4230/LIPIcs.SoCG.2019.4},
  annote =	{Keywords: Range Searching, Data Structures, Sampling}
}
Document
Independent Range Sampling, Revisited

Authors: Peyman Afshani and Zhewei Wei

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
In the independent range sampling (IRS) problem, given an input set P of n points in R^d, the task is to build a data structure, such that given a range R and an integer t >= 1, it returns t points that are uniformly and independently drawn from P cap R. The samples must satisfy inter-query independence, that is, the samples returned by every query must be independent of the samples returned by all the previous queries. This problem was first tackled by Hu, Qiao and Tao in 2014, who proposed optimal structures for one-dimensional dynamic IRS problem in internal memory and one-dimensional static IRS problem in external memory. In this paper, we study two natural extensions of the independent range sampling problem. In the first extension, we consider the static IRS problem in two and three dimensions in internal memory. We obtain data structures with optimal space-query tradeoffs for 3D halfspace, 3D dominance, and 2D three-sided queries. The second extension considers weighted IRS problem. Each point is associated with a real-valued weight, and given a query range R, a sample is drawn independently such that each point in P cap R is selected with probability proportional to its weight. Walker's alias method is a classic solution to this problem when no query range is specified. We obtain optimal data structure for one dimensional weighted range sampling problem, thereby extending the alias method to allow range queries.

Cite as

Peyman Afshani and Zhewei Wei. Independent Range Sampling, Revisited. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 3:1-3:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2017.3,
  author =	{Afshani, Peyman and Wei, Zhewei},
  title =	{{Independent Range Sampling, Revisited}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.3},
  URN =		{urn:nbn:de:0030-drops-78592},
  doi =		{10.4230/LIPIcs.ESA.2017.3},
  annote =	{Keywords: data structures, range searching, range sampling, random sampling}
}
Document
Modeling Power Consumption and Temperature in TLM Models

Authors: Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi

Published in: LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1


Abstract
Many techniques and tools exist to estimate the power consumption and the temperature map of a chip. These tools help the hardware designers develop power efficient chips in the presence of temperature constraints. For this task, the application can be ignored or at least abstracted by some high level scenarios; at this stage, the actual embedded software is generally not available yet.However, after the hardware is defined, the embedded software can still have a significant influence on the power consumption; i.e., two implementations of the same application can consume more or less power. Moreover, the actual software power manager ensuring the temperature constraints, usually by acting dynamically on the voltage and frequency, must itself be validated. Validating such power management policy requires a model of both actuators and sensors, hence a closed-loop simulation of the functional model with a non-functional one.In this paper, we present and compare several tools to simulate the power and thermal behavior of a chip together with its functionality. We explore several levels of abstraction and study the impact on the precision of the analysis.

Cite as

Matthieu Moy, Claude Helmstetter, Tayeb Bouhadiba, and Florence Maraninchi. Modeling Power Consumption and Temperature in TLM Models. In LITES, Volume 3, Issue 1 (2016). Leibniz Transactions on Embedded Systems, Volume 3, Issue 1, pp. 03:1-03:29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@Article{moy_et_al:LITES-v003-i001-a003,
  author =	{Moy, Matthieu and Helmstetter, Claude and Bouhadiba, Tayeb and Maraninchi, Florence},
  title =	{{Modeling Power Consumption and Temperature in TLM Models}},
  booktitle =	{LITES, Volume 3, Issue 1 (2016)},
  pages =	{03:1--03:29},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2016},
  volume =	{3},
  number =	{1},
  editor =	{Moy, Matthieu and Helmstetter, Claude and Bouhadiba, Tayeb and Maraninchi, Florence},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v003-i001-a003},
  doi =		{10.4230/LITES-v003-i001-a003},
  annote =	{Keywords: Power consumption, Temperature control, Virtual prototype, SystemC, Transactional modeling}
}
Document
New Characterizations in Turnstile Streams with Applications

Authors: Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Recently, [Li, Nguyen, Woodruff, STOC 2014] showed any 1-pass constant probability streaming algorithm for computing a relation f on a vector x in {-m, -(m-1), ..., m}^n presented in the turnstile data stream model can be implemented by maintaining a linear sketch Ax mod q, where A is an r times n integer matrix and q = (q_1, ..., q_r) is a vector of positive integers. The space complexity of maintaining Ax mod q, not including the random bits used for sampling A and q, matches the space of the optimal algorithm. We give multiple strengthenings of this reduction, together with new applications. In particular, we show how to remove the following shortcomings of their reduction: 1. The Box Constraint. Their reduction applies only to algorithms that must be correct even if x_{infinity} = max_{i in [n]} |x_i| is allowed to be much larger than m at intermediate points in the stream, provided that x is in {-m, -(m-1), ..., m}^n at the end of the stream. We give a condition under which the optimal algorithm is a linear sketch even if it works only when promised that x is in {-m, -(m-1), ..., m}^n at all points in the stream. Using this, we show the first super-constant Omega(log m) bits lower bound for the problem of maintaining a counter up to an additive epsilon*m error in a turnstile stream, where epsilon is any constant in (0, 1/2). Previous lower bounds are based on communication complexity and are only for relative error approximation; interestingly, we do not know how to prove our result using communication complexity. More generally, we show the first super-constant Omega(log(m)) lower bound for additive approximation of l_p-norms; this bound is tight for p in [1, 2]. 2. Negative Coordinates. Their reduction allows x_i to be negative while processing the stream. We show an equivalence between 1-pass algorithms and linear sketches Ax mod q in dynamic graph streams, or more generally, the strict turnstile model, in which for all i in [n], x_i is nonnegative at all points in the stream. Combined with [Assadi, Khanna, Li, Yaroslavtsev, SODA 2016], this resolves the 1-pass space complexity of approximating the maximum matching in a dynamic graph stream, answering a question in that work. 3. 1-Pass Restriction. Their reduction only applies to 1-pass data stream algorithms in the turnstile model, while there exist algorithms for heavy hitters and for low rank approximation which provably do better with multiple passes. We extend the reduction to algorithms which make any number of passes, showing the optimal algorithm is to choose a new linear sketch at the beginning of each pass, based on the output of previous passes.

Cite as

Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New Characterizations in Turnstile Streams with Applications. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 20:1-20:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ai_et_al:LIPIcs.CCC.2016.20,
  author =	{Ai, Yuqing and Hu, Wei and Li, Yi and Woodruff, David P.},
  title =	{{New Characterizations in Turnstile Streams with Applications}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{20:1--20:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.20},
  URN =		{urn:nbn:de:0030-drops-58337},
  doi =		{10.4230/LIPIcs.CCC.2016.20},
  annote =	{Keywords: communication complexity, data streams, dynamic graph streams, norm estimation}
}
  • Refine by Author
  • 2 Afshani, Peyman
  • 1 Ai, Yuqing
  • 1 Botsch, Michael
  • 1 Bouhadiba, Tayeb
  • 1 Camalleri, Manfredi
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Machine learning
  • 1 Computing methodologies → Neural networks
  • 1 Hardware → Chip-level power issues
  • 1 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 1 Convolutional Neural Networks
  • 1 Data Structures
  • 1 Hardware Modeling
  • 1 Optimization
  • 1 Power consumption
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 4 2022
  • 2 2016
  • 1 2017
  • 1 2019
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail