7 Search Results for "Karimov, Toghrul"


Document
Track B: Automata, Logic, Semantics, and Theory of Programming
T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

Authors: Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We introduce a powerful termination algorithm for structurally recursive functions that improves on the core ideas behind lexicographic termination algorithms for functional programs. The algorithm generates linear-lexicographic combinations of primitive measure functions measuring the recursive structure of terms. We introduce a measure language that enables the simplification and comparison of measures and we prove meta-theoretic properties of our measure language. Moreover, we demonstrate our algorithm, on an untyped first-order functional language and prove its soundness and that it runs in polynomial time. We also provide a Haskell implementation. As part of this work, we also show how to solve the maximisation of negative vector-components as a linear program.

Cite as

Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah. T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 139:1-139:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giles_et_al:LIPIcs.ICALP.2024.139,
  author =	{Giles, Raphael Douglas and Jackson, Vincent and Rizkallah, Christine},
  title =	{{T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{139:1--139:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.139},
  URN =		{urn:nbn:de:0030-drops-202827},
  doi =		{10.4230/LIPIcs.ICALP.2024.139},
  annote =	{Keywords: Termination, Recursive functions}
}
Document
Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states). We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property. Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10},
  URN =		{urn:nbn:de:0030-drops-170732},
  doi =		{10.4230/LIPIcs.CONCUR.2022.10},
  annote =	{Keywords: Model checking, parametric Markov chains, distribution transformer semantics}
}
Document
The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study fundamental reachability problems on pseudo-orbits of linear dynamical systems. Pseudo-orbits can be viewed as a model of computation with limited precision and pseudo-reachability can be thought of as a robust version of classical reachability. Using an approach based on o-minimality of ℝ_exp we prove decidability of the discrete-time pseudo-reachability problem with arbitrary semialgebraic targets for diagonalisable linear dynamical systems. We also show that our method can be used to reduce the continuous-time pseudo-reachability problem to the (classical) time-bounded reachability problem, which is known to be conditionally decidable.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, and James Worrell. The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2022.40,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Worrell, James},
  title =	{{The Pseudo-Reachability Problem for Diagonalisable Linear Dynamical Systems}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.40},
  URN =		{urn:nbn:de:0030-drops-168380},
  doi =		{10.4230/LIPIcs.MFCS.2022.40},
  annote =	{Keywords: pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems, reachability}
}
Document
The Pseudo-Skolem Problem is Decidable

Authors: Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study fundamental decision problems on linear dynamical systems in discrete time. We focus on pseudo-orbits, the collection of trajectories of the dynamical system for which there is an arbitrarily small perturbation at each step. Pseudo-orbits are generalizations of orbits in the topological theory of dynamical systems. We study the pseudo-orbit problem, whether a state belongs to the pseudo-orbit of another state, and the pseudo-Skolem problem, whether a hyperplane is reachable by an ε-pseudo-orbit for every ε. These problems are analogous to the well-studied orbit problem and Skolem problem on unperturbed dynamical systems. Our main results show that the pseudo-orbit problem is decidable in polynomial time and the Skolem problem on pseudo-orbits is decidable. The former extends the seminal result of Kannan and Lipton from orbits to pseudo-orbits. The latter is in contrast to the Skolem problem for linear dynamical systems, which remains open for proper orbits.

Cite as

Julian D'Costa, Toghrul Karimov, Rupak Majumdar, Joël Ouaknine, Mahmoud Salamati, Sadegh Soudjani, and James Worrell. The Pseudo-Skolem Problem is Decidable. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 34:1-34:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2021.34,
  author =	{D'Costa, Julian and Karimov, Toghrul and Majumdar, Rupak and Ouaknine, Jo\"{e}l and Salamati, Mahmoud and Soudjani, Sadegh and Worrell, James},
  title =	{{The Pseudo-Skolem Problem is Decidable}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{34:1--34:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.34},
  URN =		{urn:nbn:de:0030-drops-144742},
  doi =		{10.4230/LIPIcs.MFCS.2021.34},
  annote =	{Keywords: Pseudo-orbits, Orbit problem, Skolem problem, linear dynamical systems}
}
Document
The Orbit Problem for Parametric Linear Dynamical Systems

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{The Orbit Problem for Parametric Linear Dynamical Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28},
  URN =		{urn:nbn:de:0030-drops-144053},
  doi =		{10.4230/LIPIcs.CONCUR.2021.28},
  annote =	{Keywords: Orbit problem, parametric, linear dynamical systems}
}
Document
Reachability in Dynamical Systems with Rounding

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We consider reachability in dynamical systems with discrete linear updates, but with fixed digital precision, i.e., such that values of the system are rounded at each step. Given a matrix M ∈ ℚ^{d × d}, an initial vector x ∈ ℚ^{d}, a granularity g ∈ ℚ_+ and a rounding operation [⋅] projecting a vector of ℚ^{d} onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the orbit 𝒪 = ⟨[x], [M[x]],[M[M[x]]],… ⟩, i.e., the trajectory of a linear dynamical system in which the state is rounded after each step. For arbitrary rounding functions with bounded effect, we show that the complexity of deciding point-to-point reachability - whether a given target y ∈ ℚ^{d} belongs to 𝒪 - is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one). We also establish decidability without any restrictions on eigenvalues for several natural classes of rounding functions.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland. Reachability in Dynamical Systems with Rounding. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.FSTTCS.2020.36,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Pouly, Amaury and Purser, David and Whiteland, Markus A.},
  title =	{{Reachability in Dynamical Systems with Rounding}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.36},
  URN =		{urn:nbn:de:0030-drops-132778},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.36},
  annote =	{Keywords: dynamical systems, rounding, reachability}
}
Document
On LTL Model Checking for Low-Dimensional Discrete Linear Dynamical Systems

Authors: Toghrul Karimov, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Consider a discrete dynamical system given by a square matrix M ∈ ℚ^{d × d} and a starting point s ∈ ℚ^d. The orbit of such a system is the infinite trajectory ⟨ s, Ms, M²s, …⟩. Given a collection T₁, T₂, …, T_m ⊆ ℝ^d of semialgebraic sets, we can associate with each T_i an atomic proposition P_i which evaluates to true at time n if, and only if, M^ns ∈ T_i. This gives rise to the LTL Model-Checking Problem for discrete linear dynamical systems: given such a system (M,s) and an LTL formula over such atomic propositions, determine whether the orbit satisfies the formula. The main contribution of the present paper is to show that the LTL Model-Checking Problem for discrete linear dynamical systems is decidable in dimension 3 or less.

Cite as

Toghrul Karimov, Joël Ouaknine, and James Worrell. On LTL Model Checking for Low-Dimensional Discrete Linear Dynamical Systems. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{karimov_et_al:LIPIcs.MFCS.2020.54,
  author =	{Karimov, Toghrul and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{On LTL Model Checking for Low-Dimensional Discrete Linear Dynamical Systems}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{54:1--54:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.54},
  URN =		{urn:nbn:de:0030-drops-127215},
  doi =		{10.4230/LIPIcs.MFCS.2020.54},
  annote =	{Keywords: Linear dynamical systems, Orbit Problem, LTL model checking}
}
  • Refine by Author
  • 6 Karimov, Toghrul
  • 6 Ouaknine, Joël
  • 5 Worrell, James
  • 3 Baier, Christel
  • 3 Funke, Florian
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Orbit problem
  • 3 linear dynamical systems
  • 2 Skolem problem
  • 2 reachability
  • 1 LTL model checking
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2020
  • 2 2021
  • 2 2022
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail