20 Search Results for "Manzini, Giovanni"


Document
Re²Pair: Increasing the Scalability of RePair by Decreasing Memory Usage

Authors: Justin Kim, Rahul Varki, Marco Oliva, and Christina Boucher

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The RePair compression algorithm produces a context-free grammar by iteratively substituting the most frequently occurring pair of consecutive symbols with a new symbol until all consecutive pairs of symbols appear only once in the compressed text. It is widely used in the settings of bioinformatics, machine learning, and information retrieval where random access to the original input text is needed. For example, in pangenomics, RePair is used for random access to a population of genomes. BigRePair improves the scalability of the original RePair algorithm by using Prefix-Free Parsing (PFP) to preprocess the text prior to building the RePair grammar. Despite the efficiency of PFP on repetitive text, there is a scalability issue with the size of the parse which causes a memory bottleneck in BigRePair. In this paper, we design and implement recursive RePair (denoted as Re²Pair), which builds the RePair grammar using recursive PFP. Our novel algorithm faces the challenge of constructing the RePair grammar without direct access to the parse of text, relying solely on the dictionary of the text and the parse and dictionary of the parse of the text. We compare Re²Pair to BigRePair using SARS-CoV-2 haplotypes and haplotypes from the 1000 Genomes Project. We show that our method Re²Pair achieves over a 40% peak memory reduction and a speed up ranging between 12% to 79% compared to BigRePair when compressing the largest input texts in all experiments. Re²Pair is made publicly available under the GNU public license here: https://github.com/jkim210/Recursive-RePair

Cite as

Justin Kim, Rahul Varki, Marco Oliva, and Christina Boucher. Re²Pair: Increasing the Scalability of RePair by Decreasing Memory Usage. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 78:1-78:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.ESA.2024.78,
  author =	{Kim, Justin and Varki, Rahul and Oliva, Marco and Boucher, Christina},
  title =	{{Re²Pair: Increasing the Scalability of RePair by Decreasing Memory Usage}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{78:1--78:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.78},
  URN =		{urn:nbn:de:0030-drops-211496},
  doi =		{10.4230/LIPIcs.ESA.2024.78},
  annote =	{Keywords: RePair, Compressed Data Structures, Prefix-free Parsing}
}
Document
b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index

Authors: Lore Depuydt, Luca Renders, Simon Van de Vyver, Lennart Veys, Travis Gagie, and Jan Fostier

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Due to the increasing availability of high-quality genome sequences, pan-genomes are gradually replacing single consensus reference genomes in many bioinformatics pipelines to better capture genetic diversity. Traditional bioinformatics tools using the FM-index face memory limitations with such large genome collections. Recent advancements in run-length compressed indices like Gagie et al.’s r-index and Nishimoto and Tabei’s move structure, alleviate memory constraints but focus primarily on backward search for MEM-finding. Arakawa et al.’s br-index initiates complete approximate pattern matching using bidirectional search in run-length compressed space, but with significant computational overhead due to complex memory access patterns. We introduce b-move, a novel bidirectional extension of the move structure, enabling fast, cache-efficient bidirectional character extensions in run-length compressed space. It achieves bidirectional character extensions up to 8 times faster than the br-index, closing the performance gap with FM-index-based alternatives, while maintaining the br-index’s favorable memory characteristics. For example, all available complete E. coli genomes on NCBI’s RefSeq collection can be compiled into a b-move index that fits into the RAM of a typical laptop. Thus, b-move proves practical and scalable for pan-genome indexing and querying. We provide a C++ implementation of b-move, supporting efficient lossless approximate pattern matching including locate functionality, available at https://github.com/biointec/b-move under the AGPL-3.0 license.

Cite as

Lore Depuydt, Luca Renders, Simon Van de Vyver, Lennart Veys, Travis Gagie, and Jan Fostier. b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{depuydt_et_al:LIPIcs.WABI.2024.10,
  author =	{Depuydt, Lore and Renders, Luca and Van de Vyver, Simon and Veys, Lennart and Gagie, Travis and Fostier, Jan},
  title =	{{b-move: Faster Bidirectional Character Extensions in a Run-Length Compressed Index}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.10},
  URN =		{urn:nbn:de:0030-drops-206546},
  doi =		{10.4230/LIPIcs.WABI.2024.10},
  annote =	{Keywords: Pan-genomics, FM-index, r-index, Move Structure, Bidirectional Search, Approximate Pattern Matching, Lossless Alignment, Cache Efficiency}
}
Document
Edit and Alphabet-Ordering Sensitivity of Lex-Parse

Authors: Yuto Nakashima, Dominik Köppl, Mitsuru Funakoshi, Shunsuke Inenaga, and Hideo Bannai

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We investigate the compression sensitivity [Akagi et al., 2023] of lex-parse [Navarro et al., 2021] for two operations: (1) single character edit and (2) modification of the alphabet ordering, and give tight upper and lower bounds for both operations (i.e., we show Θ(log n) bounds for strings of length n). For both lower bounds, we use the family of Fibonacci words. For the bounds on edit operations, our analysis makes heavy use of properties of the Lyndon factorization of Fibonacci words to characterize the structure of lex-parse.

Cite as

Yuto Nakashima, Dominik Köppl, Mitsuru Funakoshi, Shunsuke Inenaga, and Hideo Bannai. Edit and Alphabet-Ordering Sensitivity of Lex-Parse. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 75:1-75:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{nakashima_et_al:LIPIcs.MFCS.2024.75,
  author =	{Nakashima, Yuto and K\"{o}ppl, Dominik and Funakoshi, Mitsuru and Inenaga, Shunsuke and Bannai, Hideo},
  title =	{{Edit and Alphabet-Ordering Sensitivity of Lex-Parse}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{75:1--75:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.75},
  URN =		{urn:nbn:de:0030-drops-206314},
  doi =		{10.4230/LIPIcs.MFCS.2024.75},
  annote =	{Keywords: Compression sensitivity, Lex-parse, Fibonacci words}
}
Document
Move-r: Optimizing the r-index

Authors: Nico Bertram, Johannes Fischer, and Lukas Nalbach

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present a static text index called Move-r, which is a highly optimized version of the r-index ([Travis Gagie et al., 2020] Gagie et al., 2020) that encorporates recent theoretical developments of the move data structure ([Takaaki Nishimoto and Yasuo Tabei, 2021] Nishimoto and Tabei, 2021). The r-index is the method of choice for indexing highly repetitive texts, such as different versions of a text document or DNA from the same species, as it exploits the compressibilty of the underlying data. With Move-r, we can answer count- and locate queries 2-35 (typically 15) times as fast as with any other r-index supporting locate queries while being 0.8-2.5 (typically 2) times as large. A Move-r index can be constructed 0.9-2 (typically 2) times as fast while using 1/3-1 (typically 1/2) times as much space.

Cite as

Nico Bertram, Johannes Fischer, and Lukas Nalbach. Move-r: Optimizing the r-index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 1:1-1:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bertram_et_al:LIPIcs.SEA.2024.1,
  author =	{Bertram, Nico and Fischer, Johannes and Nalbach, Lukas},
  title =	{{Move-r: Optimizing the r-index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{1:1--1:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.1},
  URN =		{urn:nbn:de:0030-drops-203662},
  doi =		{10.4230/LIPIcs.SEA.2024.1},
  annote =	{Keywords: Compressed Text Index, Burrows-Wheeler Transform}
}
Document
Engineering Zuffix Arrays

Authors: Paolo Boldi, Stefano Marchini, and Sebastiano Vigna

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Searching patterns in long strings is a classical algorithmic problem with countless practical applications. Suffix trees and suffix arrays (and their variants) are a long-established solution that yields linear-time search (in the size of the pattern). In [Paolo Boldi and Sebastiano Vigna, 2018] it is shown that a z-map gadget can be attached to (enhanced) suffix arrays to improve their theoretical query time, obtaining a data structure called zuffix array. The main contribution of this paper is to show that a carefully engineered implementation of the z-map gadget does provide significant speedups with respect to enhanced suffix arrays on real-world datasets, albeit doubling the required space. In particular, for large alphabets we observe a sevenfold improvement in query time with respect to enhanced suffix arrays; even in the worst case (small alphabets), the query time is almost halved. Thus, zuffix arrays provide a very interesting new point in the space-time tradeoff spectrum.

Cite as

Paolo Boldi, Stefano Marchini, and Sebastiano Vigna. Engineering Zuffix Arrays. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 2:1-2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boldi_et_al:LIPIcs.SEA.2024.2,
  author =	{Boldi, Paolo and Marchini, Stefano and Vigna, Sebastiano},
  title =	{{Engineering Zuffix Arrays}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{2:1--2:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.2},
  URN =		{urn:nbn:de:0030-drops-203677},
  doi =		{10.4230/LIPIcs.SEA.2024.2},
  annote =	{Keywords: Suffix trees, suffix arrays, z-fast tries}
}
Document
Taxonomic Classification with Maximal Exact Matches in KATKA Kernels and Minimizer Digests

Authors: Dominika Draesslerová, Omar Ahmed, Travis Gagie, Jan Holub, Ben Langmead, Giovanni Manzini, and Gonzalo Navarro

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
For taxonomic classification, we are asked to index the genomes in a phylogenetic tree such that later, given a DNA read, we can quickly choose a small subtree likely to contain the genome from which that read was drawn. Although popular classifiers such as Kraken use k-mers, recent research indicates that using maximal exact matches (MEMs) can lead to better classifications. For example, we can - build an augmented FM-index over the the genomes in the tree concatenated in left-to-right order; - for each MEM in a read, find the interval in the suffix array containing the starting positions of that MEM’s occurrences in those genomes; - find the minimum and maximum values stored in that interval; - take the lowest common ancestor (LCA) of the genomes containing the characters at those positions. This solution is practical, however, only when the total size of the genomes in the tree is fairly small. In this paper we consider applying the same solution to three lossily compressed representations of the genomes' concatenation: - a KATKA kernel, which discards characters that are not in the first or last occurrence of any k_max-tuple, for a parameter k_max; - a minimizer digest; - a KATKA kernel of a minimizer digest. With a test dataset and these three representations of it, simulated reads and various parameter settings, we checked how many reads' longest MEMs occurred only in the sequences from which those reads were generated ("true positive" reads). For some parameter settings we achieved significant compression while only slightly decreasing the true-positive rate.

Cite as

Dominika Draesslerová, Omar Ahmed, Travis Gagie, Jan Holub, Ben Langmead, Giovanni Manzini, and Gonzalo Navarro. Taxonomic Classification with Maximal Exact Matches in KATKA Kernels and Minimizer Digests. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 10:1-10:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{draesslerova_et_al:LIPIcs.SEA.2024.10,
  author =	{Draesslerov\'{a}, Dominika and Ahmed, Omar and Gagie, Travis and Holub, Jan and Langmead, Ben and Manzini, Giovanni and Navarro, Gonzalo},
  title =	{{Taxonomic Classification with Maximal Exact Matches in KATKA Kernels and Minimizer Digests}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.10},
  URN =		{urn:nbn:de:0030-drops-203756},
  doi =		{10.4230/LIPIcs.SEA.2024.10},
  annote =	{Keywords: Taxonomic classification, metagenomics, KATKA, maximal exact matches, string kernels, minimizer digests}
}
Document
Track A: Algorithms, Complexity and Games
Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching

Authors: Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A parameterized string (p-string) is a string over an alphabet (Σ_s ∪ Σ_p), where Σ_s and Σ_p are disjoint alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols), respectively. Two p-strings x and y are said to parameterized match (p-match) if and only if x can be transformed into y by applying a bijection on Σ_p to every occurrence of p-symbols in x. The indexing problem for p-matching is to preprocess a p-string T of length n so that we can efficiently find the occurrences of substrings of T that p-match with a given pattern. Let σ_s and respectively σ_p be the numbers of distinct s-symbols and p-symbols that appear in T and σ = σ_s + σ_p. Extending the Burrows-Wheeler Transform (BWT) based index for exact string pattern matching, Ganguly et al. [SODA 2017] proposed parameterized BWTs (pBWTs) to design the first compact index for p-matching, and posed an open problem on how to construct the pBWT-based index in compact space, i.e., in O(n lg |Σ_s ∪ Σ_p|) bits of space. Hashimoto et al. [SPIRE 2022] showed how to construct the pBWT for T, under the assumption that Σ_s ∪ Σ_p = [0..O(σ)], in O(n lg σ) bits of space and O(n (σ_p lg n)/(lg lg n)) time in an online manner while reading the symbols of T from right to left. In this paper, we refine Hashimoto et al.’s algorithm to work in O(n lg σ) bits of space and O(n (lg σ_p lg n)/(lg lg n)) time in a more general assumption that Σ_s ∪ Σ_p = [0..n^{O(1)}]. Our result has an immediate application to constructing parameterized suffix arrays in O(n (lg σ_p lg n)/(lg lg n)) time and O(n lg σ) bits of working space. We also show that our data structure can support backward search, a core procedure of BWT-based indexes, at any stage of the online construction, making it the first compact index for p-matching that can be constructed in compact space and even in an online manner.

Cite as

Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara. Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 89:1-89:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{iseri_et_al:LIPIcs.ICALP.2024.89,
  author =	{Iseri, Kento and I, Tomohiro and Hendrian, Diptarama and K\"{o}ppl, Dominik and Yoshinaka, Ryo and Shinohara, Ayumi},
  title =	{{Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{89:1--89:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.89},
  URN =		{urn:nbn:de:0030-drops-202324},
  doi =		{10.4230/LIPIcs.ICALP.2024.89},
  annote =	{Keywords: Index for parameterized pattern matching, Parameterized Burrows-Wheeler Transform, Online construction}
}
Document
Computing the LCP Array of a Labeled Graph

Authors: Jarno N. Alanko, Davide Cenzato, Nicola Cotumaccio, Sung-Hwan Kim, Giovanni Manzini, and Nicola Prezza

Published in: LIPIcs, Volume 296, 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)


Abstract
The LCP array is an important tool in stringology, allowing to speed up pattern matching algorithms and enabling compact representations of the suffix tree. Recently, Conte et al. [DCC 2023] and Cotumaccio et al. [SPIRE 2023] extended the definition of this array to Wheeler DFAs and, ultimately, to arbitrary labeled graphs, proving that it can be used to efficiently solve matching statistics queries on the graph’s paths. In this paper, we provide the first efficient algorithm building the LCP array of a directed labeled graph with n nodes and m edges labeled over an alphabet of size σ. The first step is to transform the input graph G into a deterministic Wheeler pseudoforest G_{is} with O(n) edges encoding the lexicographically- smallest and largest strings entering in each node of the original graph. Using state-of-the-art algorithms, this step runs in O(min{mlog n, m+n²}) time on arbitrary labeled graphs, and in O(m) time on Wheeler DFAs. The LCP array of G stores the longest common prefixes between those strings, i.e. it can easily be derived from the LCP array of G_{is}. After arguing that the natural generalization of a compact-space LCP-construction algorithm by Beller et al. [J. Discrete Algorithms 2013] runs in time Ω(nσ) on pseudoforests, we present a new algorithm based on dynamic range stabbing building the LCP array of G_{is} in O(nlog σ) time and O(nlogσ) bits of working space. Combined with our reduction, we obtain the first efficient algorithm to build the LCP array of an arbitrary labeled graph. An implementation of our algorithm is publicly available at https://github.com/regindex/Labeled-Graph-LCP.

Cite as

Jarno N. Alanko, Davide Cenzato, Nicola Cotumaccio, Sung-Hwan Kim, Giovanni Manzini, and Nicola Prezza. Computing the LCP Array of a Labeled Graph. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alanko_et_al:LIPIcs.CPM.2024.1,
  author =	{Alanko, Jarno N. and Cenzato, Davide and Cotumaccio, Nicola and Kim, Sung-Hwan and Manzini, Giovanni and Prezza, Nicola},
  title =	{{Computing the LCP Array of a Labeled Graph}},
  booktitle =	{35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-326-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{296},
  editor =	{Inenaga, Shunsuke and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2024.1},
  URN =		{urn:nbn:de:0030-drops-201113},
  doi =		{10.4230/LIPIcs.CPM.2024.1},
  annote =	{Keywords: LCP array, Wheeler automata, prefix sorting, pattern matching, sorting}
}
Document
The Rational Construction of a Wheeler DFA

Authors: Giovanni Manzini, Alberto Policriti, Nicola Prezza, and Brian Riccardi

Published in: LIPIcs, Volume 296, 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)


Abstract
Deterministic Finite Wheeler Automata are a natural generalisation to regular languages of the theory of compressed data structures originated by the introduction of the Burrows-Wheeler transform. Indeed, if we can find a Wheeler automaton recognizing a given language L, such automaton can be used to design time and space efficient algorithms for representing and searching L. In this paper we introduce an alternative representation of Deterministic Wheeler Automata by showing that a natural map between strings and rational numbers in ℚ [0,1) can be extended to represent the automaton’s states as intervals in ℚ [0,1). Using this representation it emerges a natural relationship between automata properties and some properties of real numbers. In addition, such representation enables us to formulate problems related to automata in a numerical setting. Although at the moment the numerical approach does not lead to time efficient algorithms, we believe this new perspective deserves further consideration. As a further demonstration of the convenience of this new representation, we use it to provide a simple proof of an unexpected result on regular languages. More precisely, we compare the size of the smallest Wheeler automaton recognizing a given language L with respect to the size of the smallest automaton, possibly non-Wheeler, recognizing the same language. We show settings in which there can be an exponential gap between the two sizes, and we discuss the implications of this result on the problem of representing regular languages.

Cite as

Giovanni Manzini, Alberto Policriti, Nicola Prezza, and Brian Riccardi. The Rational Construction of a Wheeler DFA. In 35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 296, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{manzini_et_al:LIPIcs.CPM.2024.23,
  author =	{Manzini, Giovanni and Policriti, Alberto and Prezza, Nicola and Riccardi, Brian},
  title =	{{The Rational Construction of a Wheeler DFA}},
  booktitle =	{35th Annual Symposium on Combinatorial Pattern Matching (CPM 2024)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-326-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{296},
  editor =	{Inenaga, Shunsuke and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2024.23},
  URN =		{urn:nbn:de:0030-drops-201336},
  doi =		{10.4230/LIPIcs.CPM.2024.23},
  annote =	{Keywords: String Matching, Deterministic Finite Automata, Wheeler languages, Graph Indexing, Co-lexicographical Sorting}
}
Document
Invited Talk
Compact Text Indexing for Advanced Pattern Matching Problems: Parameterized, Order-Isomorphic, 2D, etc. (Invited Talk)

Authors: Sharma V. Thankachan

Published in: LIPIcs, Volume 223, 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)


Abstract
In the past two decades, we have witnessed the design of various compact data structures for pattern matching over an indexed text [Navarro, 2016]. Popular indexes like the FM-index [Paolo Ferragina and Giovanni Manzini, 2005], compressed suffix arrays/trees [Roberto Grossi and Jeffrey Scott Vitter, 2005; Kunihiko Sadakane, 2007], the recent r-index [Travis Gagie et al., 2020; Takaaki Nishimoto and Yasuo Tabei, 2021], etc., capture the key functionalities of classic suffix arrays/trees [Udi Manber and Eugene W. Myers, 1993; Peter Weiner, 1973] in compact space. Mostly, they rely on the Burrows-Wheeler Transform (BWT) and its associated operations [Burrows and Wheeler, 1994]. However, compactly encoding some advanced suffix tree (ST) variants, like parameterized ST [Brenda S. Baker, 1993; S. Rao Kosaraju, 1995; Juan Mendivelso et al., 2020], order-isomorphic/preserving ST [Maxime Crochemore et al., 2016], two-dimensional ST [Raffaele Giancarlo, 1995; Dong Kyue Kim et al., 1998], etc. [Sung Gwan Park et al., 2019; Tetsuo Shibuya, 2000]- collectively known as suffix trees with missing suffix links [Richard Cole and Ramesh Hariharan, 2003], has been challenging. The previous techniques are not easily extendable because these variants do not hold some structural properties of the standard ST that enable compression. However, some limited progress has been made in these directions recently [Arnab Ganguly et al., 2017; Travis Gagie et al., 2017; Gianni Decaroli et al., 2017; Dhrumil Patel and Rahul Shah, 2021; Arnab Ganguly et al., 2021; Sung{-}Hwan Kim and Hwan{-}Gue Cho, 2021; Sung{-}Hwan Kim and Hwan{-}Gue Cho, 2021; Arnab Ganguly et al., 2017; Arnab Ganguly et al., 2022; Arnab Ganguly et al., 2021]. This talk will briefly survey them and highlight some interesting open problems.

Cite as

Sharma V. Thankachan. Compact Text Indexing for Advanced Pattern Matching Problems: Parameterized, Order-Isomorphic, 2D, etc. (Invited Talk). In 33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 223, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thankachan:LIPIcs.CPM.2022.3,
  author =	{Thankachan, Sharma V.},
  title =	{{Compact Text Indexing for Advanced Pattern Matching Problems: Parameterized, Order-Isomorphic, 2D, etc.}},
  booktitle =	{33rd Annual Symposium on Combinatorial Pattern Matching (CPM 2022)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-234-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{223},
  editor =	{Bannai, Hideo and Holub, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2022.3},
  URN =		{urn:nbn:de:0030-drops-161300},
  doi =		{10.4230/LIPIcs.CPM.2022.3},
  annote =	{Keywords: Text Indexing, Suffix Trees, String Matching}
}
Document
Inverse Suffix Array Queries for 2-Dimensional Pattern Matching in Near-Compact Space

Authors: Dhrumil Patel and Rahul Shah

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
In a 2-dimensional (2D) pattern matching problem, the text is arranged as a matrix 𝖬[1..n, 1..n] and consists of N = n × n symbols drawn from alphabet set Σ of size σ. The query consists of a m × m square matrix 𝖯[1..m, 1..m] drawn from the same alphabet set Σ and the task is to find all the locations in 𝖬 where 𝖯 appears as a (contiguous) submatrix. The patterns can be of any size, but as long as they are square in shape data structures like suffix trees and suffix array exist [Raffaele Giancarlo, 1995; Dong Kyue Kim et al., 1998] for the task of efficient pattern matching. These are essentially 2D counterparts of classic suffix trees and arrays known for traditional 1-dimensional (1D) pattern matching. They work based on linearization of 2D suffixes which would preserve the prefix match property (i.e., every pattern match is a prefix of some suffix). The main limitation of the suffix trees and the suffix arrays (in 1D) was their space utilization of O(N log N) bits, where N is the size of the text. This was suboptimal compared to Nlog σ bits of space, which is information theoretic optimal for the text. With the advent of the field of succinct/compressed data structures, it was possible to develop compressed variants of suffix trees and array based on Burrows-Wheeler Tansform and LF-mapping (or Φ function) [Roberto Grossi and Jeffrey Scott Vitter, 2005; Paolo Ferragina and Giovanni Manzini, 2005; Kunihiko Sadakane, 2007]. These data structures indeed achieve O(N log σ) bits of space or better. This gives rise to the question: analogous to 1D case, can we design a succinct or compressed index for 2D pattern matching? Can there be a 2D compressed suffix tree? Are there analogues of Burrows-Wheeler Transform or LF-mapping? The problem has been acknowledged for over a decade now and there have been a few attempts at applying Φ function [Ankur Gupta, 2004] and achieving entropy based compression [Veli Mäkinen and Gonzalo Navarro, 2008]. However, achieving the complexity breakthrough akin to 1D case has yet to be found. In this paper, we still do not know how to answer suffix array queries in O(N log σ) bits of space - which would have led to efficient pattern matching. However, for the first time, we show an interesting result that it is indeed possible to compute inverse suffix array (ISA) queries in near compact space in O(polylog n) time. Our 2D succinct text index design is based on two 1D compressed suffix trees and it takes O(N log log N + N logσ) bits of space which is much smaller than its naive design that takes O(N log N) bits. Although the main problem is still evasive, this index gives a hope on the existence of a full 2D succinct index with all functionalities similar to that of 1D case.

Cite as

Dhrumil Patel and Rahul Shah. Inverse Suffix Array Queries for 2-Dimensional Pattern Matching in Near-Compact Space. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 60:1-60:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{patel_et_al:LIPIcs.ISAAC.2021.60,
  author =	{Patel, Dhrumil and Shah, Rahul},
  title =	{{Inverse Suffix Array Queries for 2-Dimensional Pattern Matching in Near-Compact Space}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{60:1--60:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.60},
  URN =		{urn:nbn:de:0030-drops-154932},
  doi =		{10.4230/LIPIcs.ISAAC.2021.60},
  annote =	{Keywords: Pattern Matching, Succinct Data Structures}
}
Document
Repetition- and Linearity-Aware Rank/Select Dictionaries

Authors: Paolo Ferragina, Giovanni Manzini, and Giorgio Vinciguerra

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We revisit the fundamental problem of compressing an integer dictionary that supports efficient rank and select operations by exploiting two kinds of regularities arising in real data: repetitiveness and approximate linearity. Our first contribution is a Lempel-Ziv parsing properly enriched to also capture approximate linearity in the data and still be compressed to the kth order entropy. Our second contribution is a variant of the block tree structure whose space complexity takes advantage of both repetitiveness and approximate linearity, and results highly competitive in time too. Our third and final contribution is an implementation and experimentation of this last data structure, which achieves new space-time trade-offs compared to known data structures that exploit only one of the two regularities.

Cite as

Paolo Ferragina, Giovanni Manzini, and Giorgio Vinciguerra. Repetition- and Linearity-Aware Rank/Select Dictionaries. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 64:1-64:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ferragina_et_al:LIPIcs.ISAAC.2021.64,
  author =	{Ferragina, Paolo and Manzini, Giovanni and Vinciguerra, Giorgio},
  title =	{{Repetition- and Linearity-Aware Rank/Select Dictionaries}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{64:1--64:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.64},
  URN =		{urn:nbn:de:0030-drops-154974},
  doi =		{10.4230/LIPIcs.ISAAC.2021.64},
  annote =	{Keywords: Data compression, Compressed data structures, Entropy}
}
Document
Compressing and Indexing Aligned Readsets

Authors: Travis Gagie, Garance Gourdel, and Giovanni Manzini

Published in: LIPIcs, Volume 201, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)


Abstract
Compressed full-text indexes are one of the main success stories of bioinformatics data structures but even they struggle to handle some DNA readsets. This may seem surprising since, at least when dealing with short reads from the same individual, the readset will be highly repetitive and, thus, highly compressible. If we are not careful, however, this advantage can be more than offset by two disadvantages: first, since most base pairs are included in at least tens reads each, the uncompressed readset is likely to be at least an order of magnitude larger than the individual’s uncompressed genome; second, these indexes usually pay some space overhead for each string they store, and the total overhead can be substantial when dealing with millions of reads. The most successful compressed full-text indexes for readsets so far are based on the Extended Burrows-Wheeler Transform (EBWT) and use a sorting heuristic to try to reduce the space overhead per read, but they still treat the reads as separate strings and thus may not take full advantage of the readset’s structure. For example, if we have already assembled an individual’s genome from the readset, then we can usually use it to compress the readset well: e.g., we store the gap-coded list of reads' starting positions; we store the list of their lengths, which is often highly compressible; and we store information about the sequencing errors, which are rare with short reads. There is nowhere, however, where we can plug an assembled genome into the EBWT. In this paper we show how to use one or more assembled or partially assembled genome as the basis for a compressed full-text index of its readset. Specifically, we build a labelled tree by taking the assembled genome as a trunk and grafting onto it the reads that align to it, at the starting positions of their alignments. Next, we compute the eXtended Burrows-Wheeler Transform (XBWT) of the resulting labelled tree and build a compressed full-text index on that. Although this index can occasionally return false positives, it is usually much more compact than the alternatives. Following the established practice for datasets with many repetitions, we compare different full-text indices by looking at the number of runs in the transformed strings. For a human Chr19 readset our preliminary experiments show that eliminating separators characters from the EBWT reduces the number of runs by 19%, from 220 million to 178 million, and using the XBWT reduces it by a further 15%, to 150 million.

Cite as

Travis Gagie, Garance Gourdel, and Giovanni Manzini. Compressing and Indexing Aligned Readsets. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 201, pp. 13:1-13:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gagie_et_al:LIPIcs.WABI.2021.13,
  author =	{Gagie, Travis and Gourdel, Garance and Manzini, Giovanni},
  title =	{{Compressing and Indexing Aligned Readsets}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{13:1--13:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2021.13},
  URN =		{urn:nbn:de:0030-drops-143660},
  doi =		{10.4230/LIPIcs.WABI.2021.13},
  annote =	{Keywords: data compression, compact data structures, FM-index, Burrows-Wheeler Transform, EBWT, XBWT, DNA reads}
}
Document
25 Years of the Burrows-Wheeler Transform (Dagstuhl Seminar 19241)

Authors: Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Jens Stoye

Published in: Dagstuhl Reports, Volume 9, Issue 6 (2020)


Abstract
Dagstuhl Seminar 19241 ("25 Years of the Burrows-Wheeler Transform") took place from June 10th to 14th, 2019, and was attended by 45 people from 13 countries and the three fields of Algorithms and Data Structures, Bioinformatics, and Combinatorics on Words. There were four talks and a panel session for each field. Feedback was generally positive and we are confident the seminar fostered interdisciplinary connections and will eventually result in noteworthy joint publications.

Cite as

Travis Gagie, Giovanni Manzini, Gonzalo Navarro, and Jens Stoye. 25 Years of the Burrows-Wheeler Transform (Dagstuhl Seminar 19241). In Dagstuhl Reports, Volume 9, Issue 6, pp. 55-68, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{gagie_et_al:DagRep.9.6.55,
  author =	{Gagie, Travis and Manzini, Giovanni and Navarro, Gonzalo and Stoye, Jens},
  title =	{{25 Years of the Burrows-Wheeler Transform (Dagstuhl Seminar 19241)}},
  pages =	{55--68},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2019},
  volume =	{9},
  number =	{6},
  editor =	{Gagie, Travis and Manzini, Giovanni and Navarro, Gonzalo and Stoye, Jens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.9.6.55},
  URN =		{urn:nbn:de:0030-drops-114874},
  doi =		{10.4230/DagRep.9.6.55},
  annote =	{Keywords: Bioinformatics, Burrows-Wheeler Transform, Combinatorics on Words, Data Compression, Data Structures, Indexing, Sequence Alignment}
}
Document
Additive Cellular Automata Over Finite Abelian Groups: Topological and Measure Theoretic Properties

Authors: Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We study the dynamical behavior of D-dimensional (D >= 1) additive cellular automata where the alphabet is any finite abelian group. This class of discrete time dynamical systems is a generalization of the systems extensively studied by many authors among which one may list [Masanobu Ito et al., 1983; Giovanni Manzini and Luciano Margara, 1999; Giovanni Manzini and Luciano Margara, 1999; Jarkko Kari, 2000; Gianpiero Cattaneo et al., 2000; Gianpiero Cattaneo et al., 2004]. Our main contribution is the proof that topologically transitive additive cellular automata are ergodic. This result represents a solid bridge between the world of measure theory and that of topology theory and greatly extends previous results obtained in [Gianpiero Cattaneo et al., 2000; Giovanni Manzini and Luciano Margara, 1999] for linear CA over Z_m i.e. additive CA in which the alphabet is the cyclic group Z_m and the local rules are linear combinations with coefficients in Z_m. In our scenario, the alphabet is any finite abelian group and the global rule is any additive map. This class of CA strictly contains the class of linear CA over Z_m^n, i.e. , with the local rule defined by n x n matrices with elements in Z_m which, in turn, strictly contains the class of linear CA over Z_m. In order to further emphasize that finite abelian groups are more expressive than Z_m we prove that, contrary to what happens in Z_m, there exist additive CA over suitable finite abelian groups which are roots (with arbitrarily large indices) of the shift map. As a consequence of our results, we have that, for additive CA, ergodic mixing, weak ergodic mixing, ergodicity, topological mixing, weak topological mixing, topological total transitivity and topological transitivity are all equivalent properties. As a corollary, we have that invertible transitive additive CA are isomorphic to Bernoulli shifts. Finally, we provide a first characterization of strong transitivity for additive CA which we suspect it might be true also for the general case.

Cite as

Alberto Dennunzio, Enrico Formenti, Darij Grinberg, and Luciano Margara. Additive Cellular Automata Over Finite Abelian Groups: Topological and Measure Theoretic Properties. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 68:1-68:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dennunzio_et_al:LIPIcs.MFCS.2019.68,
  author =	{Dennunzio, Alberto and Formenti, Enrico and Grinberg, Darij and Margara, Luciano},
  title =	{{Additive Cellular Automata Over Finite Abelian Groups: Topological and Measure Theoretic Properties}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{68:1--68:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.68},
  URN =		{urn:nbn:de:0030-drops-110126},
  doi =		{10.4230/LIPIcs.MFCS.2019.68},
  annote =	{Keywords: Cellular Automata, Symbolic Dynamics, Complex Systems}
}
  • Refine by Author
  • 11 Manzini, Giovanni
  • 6 Gagie, Travis
  • 2 Boucher, Christina
  • 2 Köppl, Dominik
  • 2 Navarro, Gonzalo
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Pattern matching
  • 4 Theory of computation → Data compression
  • 2 Theory of computation → Data structures design and analysis
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Formal languages and automata theory
  • Show More...

  • Refine by Keyword
  • 5 Burrows-Wheeler Transform
  • 2 Combinatorics on Words
  • 2 FM-index
  • 2 String Matching
  • 2 pattern matching
  • Show More...

  • Refine by Type
  • 20 document

  • Refine by Publication Year
  • 9 2024
  • 3 2019
  • 3 2021
  • 2 2017
  • 2 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail