44 Search Results for "Meel, Kuldeep S."


Volume

LIPIcs, Volume 236

25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)

SAT 2022, August 2-5, 2022, Haifa, Israel

Editors: Kuldeep S. Meel and Ofer Strichman

Document
Support Size Estimation: The Power of Conditioning

Authors: Diptarka Chakraborty, Gunjan Kumar, and Kuldeep S. Meel

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
We consider the problem of estimating the support size of a distribution D. Our investigations are pursued through the lens of distribution testing and seek to understand the power of conditional sampling (denoted as COND), wherein one is allowed to query the given distribution conditioned on an arbitrary subset S. The primary contribution of this work is to introduce a new approach to lower bounds for the COND model that relies on using powerful tools from information theory and communication complexity. Our approach allows us to obtain surprisingly strong lower bounds for the COND model and its extensions. - We bridge the longstanding gap between the upper bound O(log log n + 1/ε²) and the lower bound Ω(√{log log n}) for the COND model by providing a nearly matching lower bound. Surprisingly, we show that even if we get to know the actual probabilities along with COND samples, still Ω(log log n + 1/{ε² log (1/ε)}) queries are necessary. - We obtain the first non-trivial lower bound for the COND equipped with an additional oracle that reveals the actual as well as the conditional probabilities of the samples (to the best of our knowledge, this subsumes all of the models previously studied): in particular, we demonstrate that Ω(log log log n + 1/{ε² log (1/ε)}) queries are necessary.

Cite as

Diptarka Chakraborty, Gunjan Kumar, and Kuldeep S. Meel. Support Size Estimation: The Power of Conditioning. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 33:1-33:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.MFCS.2023.33,
  author =	{Chakraborty, Diptarka and Kumar, Gunjan and Meel, Kuldeep S.},
  title =	{{Support Size Estimation: The Power of Conditioning}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{33:1--33:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.33},
  URN =		{urn:nbn:de:0030-drops-185675},
  doi =		{10.4230/LIPIcs.MFCS.2023.33},
  annote =	{Keywords: Support-size estimation, Distribution testing, Conditional sampling, Lower bound}
}
Document
Explaining SAT Solving Using Causal Reasoning

Authors: Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, and Kuldeep S. Meel

Published in: LIPIcs, Volume 271, 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)


Abstract
The past three decades have witnessed notable success in designing efficient SAT solvers, with modern solvers capable of solving industrial benchmarks containing millions of variables in just a few seconds. The success of modern SAT solvers owes to the widely-used CDCL algorithm, which lacks comprehensive theoretical investigation. Furthermore, it has been observed that CDCL solvers still struggle to deal with specific classes of benchmarks comprising only hundreds of variables, which contrasts with their widespread use in real-world applications. Consequently, there is an urgent need to uncover the inner workings of these seemingly weak yet powerful black boxes. In this paper, we present a first step towards this goal by introducing an approach called {CausalSAT}, which employs causal reasoning to gain insights into the functioning of modern SAT solvers. {CausalSAT} initially generates observational data from the execution of SAT solvers and learns a structured graph representing the causal relationships between the components of a SAT solver. Subsequently, given a query such as whether a clause with low literals blocks distance (LBD) has a higher clause utility, {CausalSAT} calculates the causal effect of LBD on clause utility and provides an answer to the question. We use {CausalSAT} to quantitatively verify hypotheses previously regarded as "rules of thumb" or empirical findings, such as the query above or the notion that clauses with high LBD experience a rapid drop in utility over time. Moreover, {CausalSAT} can address previously unexplored questions, like which branching heuristic leads to greater clause utility in order to study the relationship between branching and clause management. Experimental evaluations using practical benchmarks demonstrate that {CausalSAT} effectively fits the data, verifies four "rules of thumb", and provides answers to three questions closely related to implementing modern solvers.

Cite as

Jiong Yang, Arijit Shaw, Teodora Baluta, Mate Soos, and Kuldeep S. Meel. Explaining SAT Solving Using Causal Reasoning. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 271, pp. 28:1-28:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{yang_et_al:LIPIcs.SAT.2023.28,
  author =	{Yang, Jiong and Shaw, Arijit and Baluta, Teodora and Soos, Mate and Meel, Kuldeep S.},
  title =	{{Explaining SAT Solving Using Causal Reasoning}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{28:1--28:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.28},
  URN =		{urn:nbn:de:0030-drops-184909},
  doi =		{10.4230/LIPIcs.SAT.2023.28},
  annote =	{Keywords: Satisfiability, Causality, SAT solver, Clause management}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

Authors: Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and Kuldeep S. Meel

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Given a Boolean formula ϕ over n variables, the problem of model counting is to compute the number of solutions of ϕ. Model counting is a fundamental problem in computer science with wide-ranging applications in domains such as quantified information leakage, probabilistic reasoning, network reliability, neural network verification, and more. Owing to the #P-hardness of the problems, Stockmeyer initiated the study of the complexity of approximate counting. Stockmeyer showed that log n calls to an NP oracle are necessary and sufficient to achieve (ε,δ) guarantees. The hashing-based framework proposed by Stockmeyer has been very influential in designing practical counters over the past decade, wherein the SAT solver substitutes the NP oracle calls in practice. It is well known that an NP oracle does not fully capture the behavior of SAT solvers, as SAT solvers are also designed to provide satisfying assignments when a formula is satisfiable, without additional overhead. Accordingly, the notion of SAT oracle has been proposed to capture the behavior of SAT solver wherein given a Boolean formula, an SAT oracle returns a satisfying assignment if the formula is satisfiable or returns unsatisfiable otherwise. Since the practical state-of-the-art approximate counting techniques use SAT solvers, a natural question is whether an SAT oracle is more powerful than an NP oracle in the context of approximate model counting. The primary contribution of this work is to study the relative power of the NP oracle and SAT oracle in the context of approximate model counting. The previous techniques proposed in the context of an NP oracle are weak to provide strong bounds in the context of SAT oracle since, in contrast to an NP oracle that provides only one bit of information, a SAT oracle can provide n bits of information. We therefore develop a new methodology to achieve the main result: a SAT oracle is no more powerful than an NP oracle in the context of approximate model counting.

Cite as

Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and Kuldeep S. Meel. Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 123:1-123:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.ICALP.2023.123,
  author =	{Chakraborty, Diptarka and Chakraborty, Sourav and Kumar, Gunjan and Meel, Kuldeep S.},
  title =	{{Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{123:1--123:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.123},
  URN =		{urn:nbn:de:0030-drops-181750},
  doi =		{10.4230/LIPIcs.ICALP.2023.123},
  annote =	{Keywords: Model counting, Approximation, Satisfiability, NP oracle, SAT oracle}
}
Document
Distinct Elements in Streams: An Algorithm for the (Text) Book

Authors: Sourav Chakraborty, N. V. Vinodchandran¹, and Kuldeep S. Meel

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Given a data stream 𝒟 = ⟨ a₁, a₂, …, a_m ⟩ of m elements where each a_i ∈ [n], the Distinct Elements problem is to estimate the number of distinct elements in 𝒟. Distinct Elements has been a subject of theoretical and empirical investigations over the past four decades resulting in space optimal algorithms for it. All the current state-of-the-art algorithms are, however, beyond the reach of an undergraduate textbook owing to their reliance on the usage of notions such as pairwise independence and universal hash functions. We present a simple, intuitive, sampling-based space-efficient algorithm whose description and the proof are accessible to undergraduates with the knowledge of basic probability theory.

Cite as

Sourav Chakraborty, N. V. Vinodchandran¹, and Kuldeep S. Meel. Distinct Elements in Streams: An Algorithm for the (Text) Book. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 34:1-34:6, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.ESA.2022.34,
  author =	{Chakraborty, Sourav and Vinodchandran¹, N. V. and Meel, Kuldeep S.},
  title =	{{Distinct Elements in Streams: An Algorithm for the (Text) Book}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{34:1--34:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.34},
  URN =		{urn:nbn:de:0030-drops-169725},
  doi =		{10.4230/LIPIcs.ESA.2022.34},
  annote =	{Keywords: F₀ Estimation, Streaming, Sampling}
}
Document
Complete Volume
LIPIcs, Volume 236, SAT 2022, Complete Volume

Authors: Kuldeep S. Meel and Ofer Strichman

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
LIPIcs, Volume 236, SAT 2022, Complete Volume

Cite as

Kuldeep S. Meel and Ofer Strichman. LIPIcs, Volume 236, SAT 2022, Complete Volume. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 1-618, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{meel_et_al:LIPIcs.SAT.2022,
  title =	{{LIPIcs, Volume 236, SAT 2022, Complete Volume}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{1--618},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022},
  URN =		{urn:nbn:de:0030-drops-166736},
  doi =		{10.4230/LIPIcs.SAT.2022},
  annote =	{Keywords: LIPIcs, Volume 236, SAT 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Kuldeep S. Meel and Ofer Strichman

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

Kuldeep S. Meel and Ofer Strichman. Front Matter, Table of Contents, Preface, Conference Organization. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 0:i-0:xviii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{meel_et_al:LIPIcs.SAT.2022.0,
  author =	{Meel, Kuldeep S. and Strichman, Ofer},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{0:i--0:xviii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.0},
  URN =		{urn:nbn:de:0030-drops-166746},
  doi =		{10.4230/LIPIcs.SAT.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
SAT Preprocessors and Symmetry

Authors: Markus Anders

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
Exploitation of symmetries is an indispensable approach to solve certain classes of difficult SAT instances. Numerous techniques for the use of symmetry in SAT have evolved over the past few decades. But no matter how symmetries are used precisely, they have to be detected first. We investigate how to detect more symmetry, faster. The initial idea is to reap the benefits of SAT preprocessing for symmetry detection. As it turns out, applying an off-the-shelf preprocessor before handling symmetry runs into problems: the preprocessor can haphazardly remove symmetry from formulas, severely impeding symmetry exploitation. Our main contribution is a theoretical framework that captures the relationship of SAT preprocessing techniques and symmetry. Based on this, we create a symmetry-aware preprocessor that can be applied safely before handling symmetry. We then demonstrate that applying the preprocessor does not only substantially decrease symmetry detection and breaking times, but also uncovers hidden symmetry not detectable in the original instances. Overall, we depart the conventional view of treating symmetry detection as a black-box, presenting a new application-specific approach to symmetry detection in SAT.

Cite as

Markus Anders. SAT Preprocessors and Symmetry. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 1:1-1:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{anders:LIPIcs.SAT.2022.1,
  author =	{Anders, Markus},
  title =	{{SAT Preprocessors and Symmetry}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.1},
  URN =		{urn:nbn:de:0030-drops-166752},
  doi =		{10.4230/LIPIcs.SAT.2022.1},
  annote =	{Keywords: boolean satisfiability, symmetry exploitation, graph isomorphism}
}
Document
A Comprehensive Study of k-Portfolios of Recent SAT Solvers

Authors: Jakob Bach, Markus Iser, and Klemens Böhm

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
Hard combinatorial problems such as propositional satisfiability are ubiquitous. The holy grail are solution methods that show good performance on all problem instances. However, new approaches emerge regularly, some of which are complementary to existing solvers in that they only run faster on some instances but not on many others. While portfolios, i.e., sets of solvers, have been touted as useful, putting together such portfolios also needs to be efficient. In particular, it remains an open question how well portfolios can exploit the complementarity of solvers. This paper features a comprehensive analysis of portfolios of recent SAT solvers, the ones from the SAT Competitions 2020 and 2021. We determine optimal portfolios with exact and approximate approaches and study the impact of portfolio size k on performance. We also investigate how effective off-the-shelf prediction models are for instance-specific solver recommendations. One result is that the portfolios found with an approximate approach are as good as the optimal solution in practice. We also observe that marginal returns decrease very quickly with larger k, and our prediction models do not give way to better performance beyond very small portfolio sizes.

Cite as

Jakob Bach, Markus Iser, and Klemens Böhm. A Comprehensive Study of k-Portfolios of Recent SAT Solvers. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 2:1-2:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bach_et_al:LIPIcs.SAT.2022.2,
  author =	{Bach, Jakob and Iser, Markus and B\"{o}hm, Klemens},
  title =	{{A Comprehensive Study of k-Portfolios of Recent SAT Solvers}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{2:1--2:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.2},
  URN =		{urn:nbn:de:0030-drops-166767},
  doi =		{10.4230/LIPIcs.SAT.2022.2},
  annote =	{Keywords: Propositional satisfiability, solver portfolios, runtime prediction, machine learning, integer programming}
}
Document
On the Performance of Deep Generative Models of Realistic SAT Instances

Authors: Iván Garzón, Pablo Mesejo, and Jesús Giráldez-Cru

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
Generating realistic random SAT instances - random SAT formulas with computational characteristics similar to the ones of application SAT benchmarks - is a challenging problem in order to understand the success of modern SAT solvers solving this kind of problems. Traditional approaches are based on probabilistic models, where a probability distribution characterizes the occurrences of variables into clauses in order to mimic a certain feature exhibited in most application formulas (e.g., community structure), but they may be unable to reproduce others. Alternatively, deep generative models have been recently proposed to address this problem. The goal of these models is to learn the whole structure of the formula without focusing on any predefined feature, in order to reproduce all its computational characteristics at once. In this work, we propose two new deep generative models of realistic SAT instances, and carry out an exhaustive experimental evaluation of these and other existing models in order to analyze their performances. Our results show that models based on graph convolutional networks, possibly enhanced with edge features, return the best results in terms of structural properties and SAT solver performance.

Cite as

Iván Garzón, Pablo Mesejo, and Jesús Giráldez-Cru. On the Performance of Deep Generative Models of Realistic SAT Instances. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 3:1-3:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{garzon_et_al:LIPIcs.SAT.2022.3,
  author =	{Garz\'{o}n, Iv\'{a}n and Mesejo, Pablo and Gir\'{a}ldez-Cru, Jes\'{u}s},
  title =	{{On the Performance of Deep Generative Models of Realistic SAT Instances}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{3:1--3:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.3},
  URN =		{urn:nbn:de:0030-drops-166775},
  doi =		{10.4230/LIPIcs.SAT.2022.3},
  annote =	{Keywords: Realistic SAT generators, pseudo-industrial random SAT, deep generative models, deep learning}
}
Document
A SAT Attack on Rota’s Basis Conjecture

Authors: Markus Kirchweger, Manfred Scheucher, and Stefan Szeider

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
The SAT modulo Symmetries (SMS) is a recently introduced framework for dynamic symmetry breaking in SAT instances. It combines a CDCL SAT solver with an external lexicographic minimality checking algorithm. We extend SMS from graphs to matroids and use it to progress on Rota’s Basis Conjecture (1989), which states that one can always decompose a collection of r disjoint bases of a rank r matroid into r disjoint rainbow bases. Through SMS, we establish that the conjecture holds for all matroids of rank 4 and certain special cases of matroids of rank 5. Furthermore, we extend SMS with the facility to produce DRAT proofs. External tools can then be used to verify the validity of additional axioms produced by the lexicographic minimality check. As a byproduct, we have utilized our framework to enumerate matroids modulo isomorphism and to support the investigation of various other problems on matroids.

Cite as

Markus Kirchweger, Manfred Scheucher, and Stefan Szeider. A SAT Attack on Rota’s Basis Conjecture. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 4:1-4:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kirchweger_et_al:LIPIcs.SAT.2022.4,
  author =	{Kirchweger, Markus and Scheucher, Manfred and Szeider, Stefan},
  title =	{{A SAT Attack on Rota’s Basis Conjecture}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{4:1--4:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.4},
  URN =		{urn:nbn:de:0030-drops-166780},
  doi =		{10.4230/LIPIcs.SAT.2022.4},
  annote =	{Keywords: SAT modulo Symmetry (SMS), dynamic symmetry breaking, Rota’s basis conjecture, matroid}
}
Document
Classes of Hard Formulas for QBF Resolution

Authors: Agnes Schleitzer and Olaf Beyersdorff

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for central QBF resolution systems such as Q-Res and QU-Res, and only one specific QBF family to separate Q-Res and QU-Res. Here we provide a general method to construct hard formulas for Q-Res and QU-Res. The construction uses simple propositional formulas (e.g. minimally unsatisfiable formulas) in combination with easy QBF gadgets (Σ₂^b formulas without constant winning strategies). This leads to a host of new hard formulas, including new classes of hard random QBFs. We further present generic constructions for formulas separating Q-Res and QU-Res, and for separating Q-Res and LD-Q-Res.

Cite as

Agnes Schleitzer and Olaf Beyersdorff. Classes of Hard Formulas for QBF Resolution. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 5:1-5:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{schleitzer_et_al:LIPIcs.SAT.2022.5,
  author =	{Schleitzer, Agnes and Beyersdorff, Olaf},
  title =	{{Classes of Hard Formulas for QBF Resolution}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.5},
  URN =		{urn:nbn:de:0030-drops-166792},
  doi =		{10.4230/LIPIcs.SAT.2022.5},
  annote =	{Keywords: QBF, proof complexity, resolution, separations}
}
Document
Tight Bounds for Tseitin Formulas

Authors: Dmitry Itsykson, Artur Riazanov, and Petr Smirnov

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
We show that for any connected graph G the size of any regular resolution or OBDD(∧, reordering) refutation of a Tseitin formula based on G is at least 2^Ω(tw(G)), where tw(G) is the treewidth of G. These lower bounds improve upon the previously known bounds and, moreover, they are tight. For both of the proof systems, there are constructive upper bounds that almost match the obtained lower bounds, hence the class of Tseitin formulas is almost automatable for regular resolution and for OBDD(∧, reordering).

Cite as

Dmitry Itsykson, Artur Riazanov, and Petr Smirnov. Tight Bounds for Tseitin Formulas. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 6:1-6:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{itsykson_et_al:LIPIcs.SAT.2022.6,
  author =	{Itsykson, Dmitry and Riazanov, Artur and Smirnov, Petr},
  title =	{{Tight Bounds for Tseitin Formulas}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.6},
  URN =		{urn:nbn:de:0030-drops-166805},
  doi =		{10.4230/LIPIcs.SAT.2022.6},
  annote =	{Keywords: Proof complexity, Tseitin formulas, treewidth, resolution, OBDD-based proof systems}
}
Document
Towards Learning Quantifier Instantiation in SMT

Authors: Mikoláš Janota, Jelle Piepenbrock, and Bartosz Piotrowski

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
This paper applies machine learning (ML) to solve quantified satisfiability modulo theories (SMT) problems more efficiently. The motivating idea is that the solver should learn from already solved formulas to solve new ones. This is especially relevant in classes of similar formulas. We focus on the enumerative instantiation - a well-established approach to solving quantified formulas anchored in the Herbrand’s theorem. The task is to select the right ground terms to be instantiated. In ML parlance, this means learning to rank ground terms. We devise a series of features of the considered terms and train on them using boosted decision trees. In particular, we integrate the LightGBM library into the SMT solver cvc5. The experimental results demonstrate that the ML-guided solver enables us to solve more formulas than the base solver and reduce the number of quantifier instantiations. We also do an ablation study on the features used in the machine learning component, showing the contributions of the various additions.

Cite as

Mikoláš Janota, Jelle Piepenbrock, and Bartosz Piotrowski. Towards Learning Quantifier Instantiation in SMT. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 7:1-7:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{janota_et_al:LIPIcs.SAT.2022.7,
  author =	{Janota, Mikol\'{a}\v{s} and Piepenbrock, Jelle and Piotrowski, Bartosz},
  title =	{{Towards Learning Quantifier Instantiation in SMT}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.7},
  URN =		{urn:nbn:de:0030-drops-166810},
  doi =		{10.4230/LIPIcs.SAT.2022.7},
  annote =	{Keywords: satisfiability modulo theories, quantifier instantiation, machine learning}
}
Document
Introducing Intel(R) SAT Solver

Authors: Alexander Nadel

Published in: LIPIcs, Volume 236, 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)


Abstract
We introduce Intel(R) SAT Solver (IntelSAT) - a new open-source CDCL SAT solver, written from scratch. IntelSAT is optimized for applications which generate many mostly satisfiable incremental SAT queries. We apply the following Incremental Lazy Backtracking (ILB) principle: in-between incremental queries, backtrack only when necessary and to the highest possible decision level. ILB is enabled by a novel reimplication procedure, which can reimply an assigned literal at a lower level without backtracking. Reimplication also helped us to restore the following two properties, lost in the modern solvers with the introduction of chronological backtracking: no assigned literal can be implied at a lower level, conflict analysis always starts with a clause falsified at the lowest possible level. In addition, we apply some new heuristics. Integrating IntelSAT into the MaxSAT solver TT-Open-WBO-Inc resulted in a significant performance boost on incomplete unweighted MaxSAT Evaluation benchmarks and improved the state-of-the-art in anytime unweighted MaxSAT solving.

Cite as

Alexander Nadel. Introducing Intel(R) SAT Solver. In 25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 236, pp. 8:1-8:23, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{nadel:LIPIcs.SAT.2022.8,
  author =	{Nadel, Alexander},
  title =	{{Introducing Intel(R) SAT Solver}},
  booktitle =	{25th International Conference on Theory and Applications of Satisfiability Testing (SAT 2022)},
  pages =	{8:1--8:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-242-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{236},
  editor =	{Meel, Kuldeep S. and Strichman, Ofer},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.8},
  URN =		{urn:nbn:de:0030-drops-166825},
  doi =		{10.4230/LIPIcs.SAT.2022.8},
  annote =	{Keywords: SAT, CDCL, MaxSAT}
}
  • Refine by Author
  • 9 Meel, Kuldeep S.
  • 3 Berg, Jeremias
  • 3 Chakraborty, Sourav
  • 3 Järvisalo, Matti
  • 2 Beyersdorff, Olaf
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Automated reasoning
  • 6 Theory of computation → Constraint and logic programming
  • 6 Theory of computation → Logic and verification
  • 6 Theory of computation → Proof complexity
  • 5 Theory of computation
  • Show More...

  • Refine by Keyword
  • 5 QBF
  • 4 Model Counting
  • 4 Satisfiability
  • 3 CDCL
  • 3 SAT
  • Show More...

  • Refine by Type
  • 43 document
  • 1 volume

  • Refine by Publication Year
  • 36 2022
  • 3 2023
  • 2 2021
  • 1 2015
  • 1 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail