29 Search Results for "Mitchell, Joseph"


Document
APPROX
Online Time-Windows TSP with Predictions

Authors: Shuchi Chawla and Dimitris Christou

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In the Time-Windows TSP (TW-TSP) we are given requests at different locations on a network; each request is endowed with a reward and an interval of time; the goal is to find a tour that visits as much reward as possible during the corresponding time window. For the online version of this problem, where each request is revealed at the start of its time window, no finite competitive ratio can be obtained. We consider a version of the problem where the algorithm is presented with predictions of where and when the online requests will appear, without any knowledge of the quality of this side information. Vehicle routing problems such as the TW-TSP can be very sensitive to errors or changes in the input due to the hard time-window constraints, and it is unclear whether imperfect predictions can be used to obtain a finite competitive ratio. We show that good performance can be achieved by explicitly building slack into the solution. Our main result is an online algorithm that achieves a competitive ratio logarithmic in the diameter of the underlying network, matching the performance of the best offline algorithm to within factors that depend on the quality of the provided predictions. The competitive ratio degrades smoothly as a function of the quality and we show that this dependence is tight within constant factors.

Cite as

Shuchi Chawla and Dimitris Christou. Online Time-Windows TSP with Predictions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chawla_et_al:LIPIcs.APPROX/RANDOM.2024.2,
  author =	{Chawla, Shuchi and Christou, Dimitris},
  title =	{{Online Time-Windows TSP with Predictions}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  URN =		{urn:nbn:de:0030-drops-209954},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.2},
  annote =	{Keywords: Travelling Salesman Problem, Predictions, Learning-Augmented Algorithms, Approximation}
}
Document
Information Flow Control in Cyclic Process Networks

Authors: Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Protection of confidential data is an important security consideration of today’s applications. Of particular concern is to guard against unintentional leakage to a (malicious) observer, who may interact with the program and draw inference from made observations. Information flow control (IFC) type systems address this concern by statically ruling out such leakage. This paper contributes an IFC type system for message-passing concurrent programs, the computational model of choice for many of today’s applications such as cloud computing and IoT applications. Such applications typically either implicitly or explicitly codify protocols according to which message exchange must happen, and to statically ensure protocol safety, behavioral type systems such as session types can be used. This paper marries IFC with session typing and contributes over prior work in the following regards: (1) support of realistic cyclic process networks as opposed to the restriction to tree-shaped networks, (2) more permissive, yet entirely secure, IFC control, exploiting cyclic process networks, and (3) considering deadlocks as another form of side channel, and asserting deadlock-sensitive noninterference (DSNI) for well-typed programs. To prove DSNI, the paper develops a novel logical relation that accounts for cyclic process networks. The logical relation is rooted in linear logic, but drops the tree-topology restriction imposed by prior work.

Cite as

Bas van den Heuvel, Farzaneh Derakhshan, and Stephanie Balzer. Information Flow Control in Cyclic Process Networks. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 40:1-40:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vandenheuvel_et_al:LIPIcs.ECOOP.2024.40,
  author =	{van den Heuvel, Bas and Derakhshan, Farzaneh and Balzer, Stephanie},
  title =	{{Information Flow Control in Cyclic Process Networks}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{40:1--40:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.40},
  URN =		{urn:nbn:de:0030-drops-208891},
  doi =		{10.4230/LIPIcs.ECOOP.2024.40},
  annote =	{Keywords: Cyclic process networks, linear session types, logical relations, deadlock-sensitive noninterference}
}
Document
Combining Constraint Programming Reasoning with Large Language Model Predictions

Authors: Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation due to CP’s struggle with implementing "meaning" and ML’s difficulty with structural constraints. This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP. The LLM handles word generation and meaning, while CP manages structural constraints. This approach builds on GenCP, an improved version of On-the-fly Constraint Programming Search (OTFS) using LLM-generated domains. Compared to Beam Search (BS), a standard NLP method, this combined approach (GenCP with LLM) is faster and produces better results, ensuring all constraints are satisfied. This fusion of CP and ML presents new possibilities for enhancing text generation under constraints.

Cite as

Florian Régin, Elisabetta De Maria, and Alexandre Bonlarron. Combining Constraint Programming Reasoning with Large Language Model Predictions. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 25:1-25:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{regin_et_al:LIPIcs.CP.2024.25,
  author =	{R\'{e}gin, Florian and De Maria, Elisabetta and Bonlarron, Alexandre},
  title =	{{Combining Constraint Programming Reasoning with Large Language Model Predictions}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{25:1--25:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.25},
  URN =		{urn:nbn:de:0030-drops-207109},
  doi =		{10.4230/LIPIcs.CP.2024.25},
  annote =	{Keywords: Solver and Tools, ML-augmented CP, Constrained Text Generation, ML alongside CO}
}
Document
AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction

Authors: Adam Cicherski, Anna Lisiecka, and Norbert Dojer

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free approach that allows to construct pangenome graphs using significantly less computational resources than state-of-the-art tools. The code of AlfaPang is freely available at https://github.com/AdamCicherski/AlfaPang.

Cite as

Adam Cicherski, Anna Lisiecka, and Norbert Dojer. AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cicherski_et_al:LIPIcs.WABI.2024.23,
  author =	{Cicherski, Adam and Lisiecka, Anna and Dojer, Norbert},
  title =	{{AlfaPang: Alignment Free Algorithm for Pangenome Graph Construction}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.23},
  URN =		{urn:nbn:de:0030-drops-206673},
  doi =		{10.4230/LIPIcs.WABI.2024.23},
  annote =	{Keywords: pangenome, variation graph, genome alignment, population genomics}
}
Document
On Line-Separable Weighted Unit-Disk Coverage and Related Problems

Authors: Gang Liu and Haitao Wang

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem is to compute a subset of disks of smallest total weight such that the union of the disks in the subset covers all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an O(n^{3/2}log² n) time algorithm for the problem. This improves the previously best work of O(n²log n) time. Our result leads to an algorithm of O(n^{7/2}log² n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover n points), an improvement over the previous O(n⁴log n) time solution. If all halfplanes are lower ones, our algorithm runs in O(n^{3/2}log² n) time, while the previous best algorithm takes O(n²log n) time. Using duality, the hitting set problems under the same settings can be solved with similar time complexities.

Cite as

Gang Liu and Haitao Wang. On Line-Separable Weighted Unit-Disk Coverage and Related Problems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 70:1-70:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.70,
  author =	{Liu, Gang and Wang, Haitao},
  title =	{{On Line-Separable Weighted Unit-Disk Coverage and Related Problems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{70:1--70:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.70},
  URN =		{urn:nbn:de:0030-drops-206265},
  doi =		{10.4230/LIPIcs.MFCS.2024.70},
  annote =	{Keywords: Line-separable, unit disks, halfplanes, geometric coverage, geometric hitting set}
}
Document
Two-Dimensional Kripke Semantics I: Presheaves

Authors: G. A. Kavvos

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
The study of modal logic has witnessed tremendous development following the introduction of Kripke semantics. However, recent developments in programming languages and type theory have led to a second way of studying modalities, namely through their categorical semantics. We show how the two correspond.

Cite as

G. A. Kavvos. Two-Dimensional Kripke Semantics I: Presheaves. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kavvos:LIPIcs.FSCD.2024.14,
  author =	{Kavvos, G. A.},
  title =	{{Two-Dimensional Kripke Semantics I: Presheaves}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{14:1--14:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.14},
  URN =		{urn:nbn:de:0030-drops-203438},
  doi =		{10.4230/LIPIcs.FSCD.2024.14},
  annote =	{Keywords: modal logic, categorical semantics, Kripke semantics, duality, open maps}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects

Authors: Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the geometric knapsack problem in which we are given a set of d-dimensional objects (each with associated profits) and the goal is to find the maximum profit subset that can be packed non-overlappingly into a given d-dimensional (unit hypercube) knapsack. Even if d = 2 and all input objects are disks, this problem is known to be NP-hard [Demaine, Fekete, Lang, 2010]. In this paper, we give polynomial time (1+ε)-approximation algorithms for the following types of input objects in any constant dimension d: - disks and hyperspheres, - a class of fat convex polygons that generalizes regular k-gons for k ≥ 5 (formally, polygons with a constant number of edges, whose lengths are in a bounded range, and in which each angle is strictly larger than π/2), - arbitrary fat convex objects that are sufficiently small compared to the knapsack. We remark that in our PTAS for disks and hyperspheres, we output the computed set of objects, but for a O_ε(1) of them we determine their coordinates only up to an exponentially small error. However, it is not clear whether there always exists a (1+ε)-approximate solution that uses only rational coordinates for the disks' centers. We leave this as an open problem which is related to well-studied geometric questions in the realm of circle packing.

Cite as

Pritam Acharya, Sujoy Bhore, Aaryan Gupta, Arindam Khan, Bratin Mondal, and Andreas Wiese. Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.8,
  author =	{Acharya, Pritam and Bhore, Sujoy and Gupta, Aaryan and Khan, Arindam and Mondal, Bratin and Wiese, Andreas},
  title =	{{Approximation Schemes for Geometric Knapsack for Packing Spheres and Fat Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.8},
  URN =		{urn:nbn:de:0030-drops-201511},
  doi =		{10.4230/LIPIcs.ICALP.2024.8},
  annote =	{Keywords: Approximation Algorithms, Polygon Packing, Circle Packing, Sphere Packing, Geometric Knapsack, Resource Augmentation}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy

Authors: Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the parameterized complexity of a generalization of the coordinated motion planning problem on graphs, where the goal is to route a specified subset of a given set of k robots to their destinations with the aim of minimizing the total energy (i.e., the total length traveled). We develop novel techniques to push beyond previously-established results that were restricted to solid grids. We design a fixed-parameter additive approximation algorithm for this problem parameterized by k alone. This result, which is of independent interest, allows us to prove the following two results pertaining to well-studied coordinated motion planning problems: (1) A fixed-parameter algorithm, parameterized by k, for routing a single robot to its destination while avoiding the other robots, which is related to the famous Rush-Hour Puzzle; and (2) a fixed-parameter algorithm, parameterized by k plus the treewidth of the input graph, for the standard Coordinated Motion Planning (CMP) problem in which we need to route all the k robots to their destinations. The latter of these results implies, among others, the fixed-parameter tractability of CMP parameterized by k on graphs of bounded outerplanarity, which include bounded-height subgrids. We complement the above results with a lower bound which rules out the fixed-parameter tractability for CMP when parameterized by the total energy. This contrasts the recently-obtained tractability of the problem on solid grids under the same parameterization. As our final result, we strengthen the aforementioned fixed-parameter tractability to hold not only on solid grids but all graphs of bounded local treewidth - a class including, among others, all graphs of bounded genus.

Cite as

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 53:1-53:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.ICALP.2024.53,
  author =	{Deligkas, Argyrios and Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ramanujan, M. S.},
  title =	{{Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{53:1--53:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.53},
  URN =		{urn:nbn:de:0030-drops-201968},
  doi =		{10.4230/LIPIcs.ICALP.2024.53},
  annote =	{Keywords: coordinated motion planning, multi-agent path finding, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Õptimal Dynamic Time Warping on Run-Length Encoded Strings

Authors: Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Dynamic Time Warping (DTW) distance is the optimal cost of matching two strings when extending runs of letters is for free. Therefore, it is natural to measure the time complexity of DTW in terms of the number of runs n (rather than the string lengths N). In this paper, we give an Õ(n²) time algorithm for computing the DTW distance. This matches (up to log factors) the known (conditional) lower bound, and should be compared with the previous fastest O(n³) time exact algorithm and the Õ(n²) time approximation algorithm. Our method also immediately implies an Õ(nk) time algorithm when the distance is bounded by k. This should be compared with the previous fastest O(n²k) and O(Nk) time exact algorithms and the Õ(nk) time approximation algorithm.

Cite as

Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann. Õptimal Dynamic Time Warping on Run-Length Encoded Strings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ICALP.2024.30,
  author =	{Boneh, Itai and Golan, Shay and Mozes, Shay and Weimann, Oren},
  title =	{{\~{O}ptimal Dynamic Time Warping on Run-Length Encoded Strings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.30},
  URN =		{urn:nbn:de:0030-drops-201730},
  doi =		{10.4230/LIPIcs.ICALP.2024.30},
  annote =	{Keywords: Dynamic time warping, Fr\'{e}chet distance, edit distance, run-length encoding}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Robustly Guarding Polygons

Authors: Rathish Das, Omrit Filtser, Matthew J. Katz, and Joseph S.B. Mitchell

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We propose precise notions of what it means to guard a domain "robustly", under a variety of models. While approximation algorithms for minimizing the number of (precise) point guards in a polygon is a notoriously challenging area of investigation, we show that imposing various degrees of robustness on the notion of visibility coverage leads to a more tractable (and realistic) problem for which we can provide approximation algorithms with constant factor guarantees.

Cite as

Rathish Das, Omrit Filtser, Matthew J. Katz, and Joseph S.B. Mitchell. Robustly Guarding Polygons. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 47:1-47:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.SoCG.2024.47,
  author =	{Das, Rathish and Filtser, Omrit and Katz, Matthew J. and Mitchell, Joseph S.B.},
  title =	{{Robustly Guarding Polygons}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{47:1--47:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.47},
  URN =		{urn:nbn:de:0030-drops-199928},
  doi =		{10.4230/LIPIcs.SoCG.2024.47},
  annote =	{Keywords: geometric optimization, approximation algorithms, guarding}
}
Document
Optimizing Visibility-Based Search in Polygonal Domains

Authors: Kien C. Huynh, Joseph S. B. Mitchell, Linh Nguyen, and Valentin Polishchuk

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
Given a geometric domain P, visibility-based search problems seek routes for one or more mobile agents ("watchmen") to move within P in order to be able to see a portion (or all) of P, while optimizing objectives, such as the length(s) of the route(s), the size (e.g., area or volume) of the portion seen, the probability of detecting a target distributed within P according to a prior distribution, etc. The classic watchman route problem seeks a shortest route for an observer, with omnidirectional vision, to see all of P. In this paper we study bicriteria optimization problems for a single mobile agent within a polygonal domain P in the plane, with the criteria of route length and area seen. Specifically, we address the problem of computing a minimum length route that sees at least a specified area of P (minimum length, for a given area quota). We also study the problem of computing a length-constrained route that sees as much area as possible. We provide hardness results and approximation algorithms. In particular, for a simple polygon P we provide the first fully polynomial-time approximation scheme for the problem of computing a shortest route seeing an area quota, as well as a (slightly more efficient) polynomial dual approximation. We also consider polygonal domains P (with holes) and the special case of a planar domain consisting of a union of lines. Our results yield the first approximation algorithms for computing a time-optimal search route in P to guarantee some specified probability of detection of a static target within P, randomly distributed in P according to a given prior distribution.

Cite as

Kien C. Huynh, Joseph S. B. Mitchell, Linh Nguyen, and Valentin Polishchuk. Optimizing Visibility-Based Search in Polygonal Domains. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 27:1-27:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{huynh_et_al:LIPIcs.SWAT.2024.27,
  author =	{Huynh, Kien C. and Mitchell, Joseph S. B. and Nguyen, Linh and Polishchuk, Valentin},
  title =	{{Optimizing Visibility-Based Search in Polygonal Domains}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{27:1--27:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.27},
  URN =		{urn:nbn:de:0030-drops-200671},
  doi =		{10.4230/LIPIcs.SWAT.2024.27},
  annote =	{Keywords: Quota watchman route problem, budgeted watchman route problem, visibility-based search, approximation}
}
Document
The Geodesic Edge Center of a Simple Polygon

Authors: Anna Lubiw and Anurag Murty Naredla

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary.

Cite as

Anna Lubiw and Anurag Murty Naredla. The Geodesic Edge Center of a Simple Polygon. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lubiw_et_al:LIPIcs.SoCG.2023.49,
  author =	{Lubiw, Anna and Naredla, Anurag Murty},
  title =	{{The Geodesic Edge Center of a Simple Polygon}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.49},
  URN =		{urn:nbn:de:0030-drops-178994},
  doi =		{10.4230/LIPIcs.SoCG.2023.49},
  annote =	{Keywords: geodesic center of polygon, farthest edges, farthest-segment Voronoi diagram}
}
Document
On Flipping the Fréchet Distance

Authors: Omrit Filtser, Mayank Goswami, Joseph S. B. Mitchell, and Valentin Polishchuk

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
The classical and extensively-studied Fréchet distance between two curves is defined as an inf max, where the infimum is over all traversals of the curves, and the maximum is over all concurrent positions of the two agents. In this article we investigate a "flipped" Fréchet measure defined by a sup min - the supremum is over all traversals of the curves, and the minimum is over all concurrent positions of the two agents. This measure produces a notion of "social distance" between two curves (or general domains), where agents traverse curves while trying to stay as far apart as possible. We first study the flipped Fréchet measure between two polygonal curves in one and two dimensions, providing conditional lower bounds and matching algorithms. We then consider this measure on polygons, where it denotes the minimum distance that two agents can maintain while restricted to travel in or on the boundary of the same polygon. We investigate several variants of the problem in this setting, for some of which we provide linear time algorithms. Finally, we consider this measure on graphs. We draw connections between our proposed flipped Fréchet measure and existing related work in computational geometry, hoping that our new measure may spawn investigations akin to those performed for the Fréchet distance, and into further interesting problems that arise.

Cite as

Omrit Filtser, Mayank Goswami, Joseph S. B. Mitchell, and Valentin Polishchuk. On Flipping the Fréchet Distance. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 51:1-51:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{filtser_et_al:LIPIcs.ITCS.2023.51,
  author =	{Filtser, Omrit and Goswami, Mayank and Mitchell, Joseph S. B. and Polishchuk, Valentin},
  title =	{{On Flipping the Fr\'{e}chet Distance}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{51:1--51:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.51},
  URN =		{urn:nbn:de:0030-drops-175548},
  doi =		{10.4230/LIPIcs.ITCS.2023.51},
  annote =	{Keywords: curves, polygons, distancing measure}
}
Document
The Dispersive Art Gallery Problem

Authors: Christian Rieck and Christian Scheffer

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We introduce a new variant of the art gallery problem that comes from safety issues. In this variant we are not interested in guard sets of smallest cardinality, but in guard sets with largest possible distances between these guards. To the best of our knowledge, this variant has not been considered before. We call it the Dispersive Art Gallery Problem. In particular, in the dispersive art gallery problem we are given a polygon 𝒫 and a real number 𝓁, and want to decide whether 𝒫 has a guard set such that every pair of guards in this set is at least a distance of 𝓁 apart. In this paper, we study the vertex guard variant of this problem for the class of polyominoes. We consider rectangular visibility and distances as geodesics in the L₁-metric. Our results are as follows. We give a (simple) thin polyomino such that every guard set has minimum pairwise distances of at most 3. On the positive side, we describe an algorithm that computes guard sets for simple polyominoes that match this upper bound, i.e., the algorithm constructs worst-case optimal solutions. We also study the computational complexity of computing guard sets that maximize the smallest distance between all pairs of guards within the guard sets. We prove that deciding whether there exists a guard set realizing a minimum pairwise distance for all pairs of guards of at least 5 in a given polyomino is NP-complete. We were also able to find an optimal dynamic programming approach that computes a guard set that maximizes the minimum pairwise distance between guards in tree-shaped polyominoes, i.e., computes optimal solutions; due to space constraints, details can be found in the full version of our paper [Christian Rieck and Christian Scheffer, 2022]. Because the shapes constructed in the NP-hardness reduction are thin as well (but have holes), this result completes the case for thin polyominoes.

Cite as

Christian Rieck and Christian Scheffer. The Dispersive Art Gallery Problem. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 67:1-67:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{rieck_et_al:LIPIcs.ISAAC.2022.67,
  author =	{Rieck, Christian and Scheffer, Christian},
  title =	{{The Dispersive Art Gallery Problem}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{67:1--67:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.67},
  URN =		{urn:nbn:de:0030-drops-173522},
  doi =		{10.4230/LIPIcs.ISAAC.2022.67},
  annote =	{Keywords: Art gallery, dispersion, polyominoes, NP-completeness, r-visibility, vertex guards, L₁-metric, worst-case optimal}
}
  • Refine by Author
  • 13 Mitchell, Joseph S. B.
  • 5 Arkin, Esther M.
  • 5 Polishchuk, Valentin
  • 3 Carmi, Paz
  • 3 Katz, Matthew J.
  • Show More...

  • Refine by Classification
  • 9 Theory of computation → Computational geometry
  • 6 Theory of computation → Design and analysis of algorithms
  • 1 Applied computing → Computational genomics
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • Show More...

  • Refine by Keyword
  • 2 Approximation Algorithms
  • 2 approximation
  • 2 approximation algorithms
  • 1 Air Traffic Management
  • 1 Algorithm engineering
  • Show More...

  • Refine by Type
  • 29 document

  • Refine by Publication Year
  • 12 2024
  • 5 2020
  • 2 2009
  • 2 2016
  • 2 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail