12 Search Results for "Narayanan, Shyam"


Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms for the Generalized Poset Sorting Problem

Authors: Shaofeng H.-C. Jiang, Wenqian Wang, Yubo Zhang, and Yuhao Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider a generalized poset sorting problem (GPS), in which we are given a query graph G = (V, E) and an unknown poset 𝒫(V, ≺) that is defined on the same vertex set V, and the goal is to make as few queries as possible to edges in G in order to fully recover 𝒫, where each query (u, v) returns the relation between u, v, i.e., u ≺ v, v ≺ u or u ̸ ∼ v. This generalizes both the poset sorting problem [Faigle et al., SICOMP 88] and the generalized sorting problem [Huang et al., FOCS 11]. We give algorithms with Õ(n poly(k)) query complexity when G is a complete bipartite graph or G is stochastic under the Erdős-Rényi model, where k is the width of the poset, and these generalize [Daskalakis et al., SICOMP 11] which only studies complete graph G. Both results are based on a unified framework that reduces the poset sorting to partitioning the vertices with respect to a given pivot element, which may be of independent interest. Moreover, we also propose novel algorithms to implement this partition oracle. Notably, we suggest a randomized BFS with vertex skipping for the stochastic G, and it yields a nearly-tight bound even for the special case of generalized sorting (for stochastic G) which is comparable to the main result of a recent work [Kuszmaul et al., FOCS 21] but is conceptually different and simplified. Our study of GPS also leads to a new Õ(n^{1 - 1 / (2W)}) competitive ratio for the so-called weighted generalized sorting problem where W is the number of distinct weights in the query graph. This problem was considered as an open question in [Charikar et al., JCSS 02], and our result makes important progress as it yields the first nontrivial sublinear ratio for general weighted query graphs (for any bounded W). We obtain this via an Õ(nk + n^{1.5}) query complexity algorithm for the case where every edge in G is guaranteed to be comparable in the poset, which generalizes a Õ(n^{1.5}) bound for generalized sorting [Huang et al., FOCS 11].

Cite as

Shaofeng H.-C. Jiang, Wenqian Wang, Yubo Zhang, and Yuhao Zhang. Algorithms for the Generalized Poset Sorting Problem. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 92:1-92:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2024.92,
  author =	{Jiang, Shaofeng H.-C. and Wang, Wenqian and Zhang, Yubo and Zhang, Yuhao},
  title =	{{Algorithms for the Generalized Poset Sorting Problem}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{92:1--92:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.92},
  URN =		{urn:nbn:de:0030-drops-202359},
  doi =		{10.4230/LIPIcs.ICALP.2024.92},
  annote =	{Keywords: sorting, poset sorting, generalized sorting}
}
Document
APPROX
Improved Diversity Maximization Algorithms for Matching and Pseudoforest

Authors: Sepideh Mahabadi and Shyam Narayanan

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In this work we consider the diversity maximization problem, where given a data set X of n elements, and a parameter k, the goal is to pick a subset of X of size k maximizing a certain diversity measure. Chandra and Halldórsson [Barun Chandra and Magnús M. Halldórsson, 2001] defined a variety of diversity measures based on pairwise distances between the points. A constant factor approximation algorithm was known for all those diversity measures except "remote-matching", where only an O(log k) approximation was known. In this work we present an O(1) approximation for this remaining notion. Further, we consider these notions from the perpective of composable coresets. Indyk et al. [Piotr Indyk et al., 2014] provided composable coresets with a constant factor approximation for all but "remote-pseudoforest" and "remote-matching", which again they only obtained a O(log k) approximation. Here we also close the gap up to constants and present a constant factor composable coreset algorithm for these two notions. For remote-matching, our coreset has size only O(k), and for remote-pseudoforest, our coreset has size O(k^{1+ε}) for any ε > 0, for an O(1/ε)-approximate coreset.

Cite as

Sepideh Mahabadi and Shyam Narayanan. Improved Diversity Maximization Algorithms for Matching and Pseudoforest. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{mahabadi_et_al:LIPIcs.APPROX/RANDOM.2023.25,
  author =	{Mahabadi, Sepideh and Narayanan, Shyam},
  title =	{{Improved Diversity Maximization Algorithms for Matching and Pseudoforest}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.25},
  URN =		{urn:nbn:de:0030-drops-188503},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.25},
  annote =	{Keywords: diversity maximization, approximation algorithms, composable coresets}
}
Document
RANDOM
Bias Reduction for Sum Estimation

Authors: Talya Eden, Jakob Bæk Tejs Houen, Shyam Narayanan, Will Rosenbaum, and Jakub Tětek

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In classical statistics and distribution testing, it is often assumed that elements can be sampled exactly from some distribution 𝒫, and that when an element x is sampled, the probability 𝒫(x) of sampling x is also known. In this setting, recent work in distribution testing has shown that many algorithms are robust in the sense that they still produce correct output if the elements are drawn from any distribution 𝒬 that is sufficiently close to 𝒫. This phenomenon raises interesting questions: under what conditions is a "noisy" distribution 𝒬 sufficient, and what is the algorithmic cost of coping with this noise? In this paper, we investigate these questions for the problem of estimating the sum of a multiset of N real values x_1, …, x_N. This problem is well-studied in the statistical literature in the case 𝒫 = 𝒬, where the Hansen-Hurwitz estimator [Annals of Mathematical Statistics, 1943] is frequently used. We assume that for some (known) distribution 𝒫, values are sampled from a distribution 𝒬 that is pointwise close to 𝒫. That is, there is a parameter γ < 1 such that for all x_i, (1 - γ) 𝒫(i) ≤ 𝒬(i) ≤ (1 + γ) 𝒫(i). For every positive integer k we define an estimator ζ_k for μ = ∑_i x_i whose bias is proportional to γ^k (where our ζ₁ reduces to the classical Hansen-Hurwitz estimator). As a special case, we show that if 𝒬 is pointwise γ-close to uniform and all x_i ∈ {0, 1}, for any ε > 0, we can estimate μ to within additive error ε N using m = Θ(N^{1-1/k}/ε^{2/k}) samples, where k = ⌈lg ε/lg γ⌉. We then show that this sample complexity is essentially optimal. Interestingly, our upper and lower bounds show that the sample complexity need not vary uniformly with the desired error parameter ε: for some values of ε, perturbations in its value have no asymptotic effect on the sample complexity, while for other values, any decrease in its value results in an asymptotically larger sample complexity.

Cite as

Talya Eden, Jakob Bæk Tejs Houen, Shyam Narayanan, Will Rosenbaum, and Jakub Tětek. Bias Reduction for Sum Estimation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 62:1-62:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{eden_et_al:LIPIcs.APPROX/RANDOM.2023.62,
  author =	{Eden, Talya and Houen, Jakob B{\ae}k Tejs and Narayanan, Shyam and Rosenbaum, Will and T\v{e}tek, Jakub},
  title =	{{Bias Reduction for Sum Estimation}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{62:1--62:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.62},
  URN =		{urn:nbn:de:0030-drops-188872},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.62},
  annote =	{Keywords: bias reduction, sum estimation, sublinear time algorithms, sample complexity}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game

Authors: William Kuszmaul and Shyam Narayanan

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The p-processor cup game is a classic and widely studied scheduling problem that captures the setting in which a p-processor machine must assign tasks to processors over time in order to ensure that no individual task ever falls too far behind. The problem is formalized as a multi-round game in which two players, a filler (who assigns work to tasks) and an emptier (who schedules tasks) compete. The emptier’s goal is to minimize backlog, which is the maximum amount of outstanding work for any task. Recently, Kuszmaul and Westover (ITCS, 2021) proposed the variable-processor cup game, which considers the same problem, except that the amount of resources available to the players (i.e., the number p of processors) fluctuates between rounds of the game. They showed that this seemingly small modification fundamentally changes the dynamics of the game: whereas the optimal backlog in the fixed p-processor game is Θ(log n), independent of p, the optimal backlog in the variable-processor game is Θ(n). The latter result was only known to apply to games with exponentially many rounds, however, and it has remained an open question what the optimal tradeoff between time and backlog is for shorter games. This paper establishes a tight trade-off curve between time and backlog in the variable-processor cup game. We show that, for a game consisting of t rounds, the optimal backlog is Θ (b (t)) where b(t) = t (if t ≤ log n) t^{1/3} log^{2/3} ({n^3}/t + 1) (if log n < t ≤ n^3) n (if n ^ 3 < t). An important consequence is that the optimal backlog is Θ(n) if and only if t ≥ Ω(n³). Our techniques also allow for us to resolve several other open questions concerning how the variable-processor cup game behaves in beyond-worst-case-analysis settings.

Cite as

William Kuszmaul and Shyam Narayanan. Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 85:1-85:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kuszmaul_et_al:LIPIcs.ICALP.2022.85,
  author =	{Kuszmaul, William and Narayanan, Shyam},
  title =	{{Optimal Time-Backlog Tradeoffs for the Variable-Processor Cup Game}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{85:1--85:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.85},
  URN =		{urn:nbn:de:0030-drops-164263},
  doi =		{10.4230/LIPIcs.ICALP.2022.85},
  annote =	{Keywords: Cup Games, Potential Functions, Greedy}
}
Document
Pseudorandom Generators for Unbounded-Width Permutation Branching Programs

Authors: William M. Hoza, Edward Pyne, and Salil Vadhan

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We prove that the Impagliazzo-Nisan-Wigderson [Impagliazzo et al., 1994] pseudorandom generator (PRG) fools ordered (read-once) permutation branching programs of unbounded width with a seed length of Õ(log d + log n ⋅ log(1/ε)), assuming the program has only one accepting vertex in the final layer. Here, n is the length of the program, d is the degree (equivalently, the alphabet size), and ε is the error of the PRG. In contrast, we show that a randomly chosen generator requires seed length Ω(n log d) to fool such unbounded-width programs. Thus, this is an unusual case where an explicit construction is "better than random." Except when the program’s width w is very small, this is an improvement over prior work. For example, when w = poly(n) and d = 2, the best prior PRG for permutation branching programs was simply Nisan’s PRG [Nisan, 1992], which fools general ordered branching programs with seed length O(log(wn/ε) log n). We prove a seed length lower bound of Ω̃(log d + log n ⋅ log(1/ε)) for fooling these unbounded-width programs, showing that our seed length is near-optimal. In fact, when ε ≤ 1/log n, our seed length is within a constant factor of optimal. Our analysis of the INW generator uses the connection between the PRG and the derandomized square of Rozenman and Vadhan [Rozenman and Vadhan, 2005] and the recent analysis of the latter in terms of unit-circle approximation by Ahmadinejad et al. [Ahmadinejad et al., 2020].

Cite as

William M. Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom Generators for Unbounded-Width Permutation Branching Programs. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{hoza_et_al:LIPIcs.ITCS.2021.7,
  author =	{Hoza, William M. and Pyne, Edward and Vadhan, Salil},
  title =	{{Pseudorandom Generators for Unbounded-Width Permutation Branching Programs}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.7},
  URN =		{urn:nbn:de:0030-drops-135464},
  doi =		{10.4230/LIPIcs.ITCS.2021.7},
  annote =	{Keywords: Pseudorandom generators, permutation branching programs}
}
Document
Circular Trace Reconstruction

Authors: Shyam Narayanan and Michael Ren

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Trace reconstruction is the problem of learning an unknown string x from independent traces of x, where traces are generated by independently deleting each bit of x with some deletion probability q. In this paper, we initiate the study of Circular trace reconstruction, where the unknown string x is circular and traces are now rotated by a random cyclic shift. Trace reconstruction is related to many computational biology problems studying DNA, which is a primary motivation for this problem as well, as many types of DNA are known to be circular. Our main results are as follows. First, we prove that we can reconstruct arbitrary circular strings of length n using exp(Õ(n^{1/3})) traces for any constant deletion probability q, as long as n is prime or the product of two primes. For n of this form, this nearly matches what was the best known bound of exp(O(n^{1/3})) for standard trace reconstruction when this paper was initially released. We note, however, that Chase very recently improved the standard trace reconstruction bound to exp(Õ(n^{1/5})). Next, we prove that we can reconstruct random circular strings with high probability using n^O(1) traces for any constant deletion probability q. Finally, we prove a lower bound of Ω̃(n³) traces for arbitrary circular strings, which is greater than the best known lower bound of Ω̃(n^{3/2}) in standard trace reconstruction.

Cite as

Shyam Narayanan and Michael Ren. Circular Trace Reconstruction. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{narayanan_et_al:LIPIcs.ITCS.2021.18,
  author =	{Narayanan, Shyam and Ren, Michael},
  title =	{{Circular Trace Reconstruction}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.18},
  URN =		{urn:nbn:de:0030-drops-135573},
  doi =		{10.4230/LIPIcs.ITCS.2021.18},
  annote =	{Keywords: Trace Reconstruction, Deletion Channel, Cyclotomic Integers}
}
Document
RANDOM
Pairwise Independent Random Walks Can Be Slightly Unbounded

Authors: Shyam Narayanan

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
A family of problems that have been studied in the context of various streaming algorithms are generalizations of the fact that the expected maximum distance of a 4-wise independent random walk on a line over n steps is O(sqrt{n}). For small values of k, there exist k-wise independent random walks that can be stored in much less space than storing n random bits, so these properties are often useful for lowering space bounds. In this paper, we show that for all of these examples, 4-wise independence is required by demonstrating a pairwise independent random walk with steps uniform in +/- 1 and expected maximum distance Omega(sqrt{n} lg n) from the origin. We also show that this bound is tight for the first and second moment, i.e. the expected maximum square distance of a 2-wise independent random walk is always O(n lg^2 n). Also, for any even k >= 4, we show that the kth moment of the maximum distance of any k-wise independent random walk is O(n^{k/2}). The previous two results generalize to random walks tracking insertion-only streams, and provide higher moment bounds than currently known. We also prove a generalization of Kolmogorov’s maximal inequality by showing an asymptotically equivalent statement that requires only 4-wise independent random variables with bounded second moments, which also generalizes a result of Błasiok.

Cite as

Shyam Narayanan. Pairwise Independent Random Walks Can Be Slightly Unbounded. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 63:1-63:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{narayanan:LIPIcs.APPROX-RANDOM.2019.63,
  author =	{Narayanan, Shyam},
  title =	{{Pairwise Independent Random Walks Can Be Slightly Unbounded}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{63:1--63:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.63},
  URN =		{urn:nbn:de:0030-drops-112787},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.63},
  annote =	{Keywords: k-wise Independence, Random Walks, Moments, Chaining}
}
Document
Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers

Authors: Shyam Narayanan

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
The 1-center clustering with outliers problem asks about identifying a prototypical robust statistic that approximates the location of a cluster of points. Given some constant 0 < alpha < 1 and n points such that alpha n of them are in some (unknown) ball of radius r, the goal is to compute a ball of radius O(r) that also contains alpha n points. This problem can be formulated with the points in a normed vector space such as R^d or in a general metric space. The problem has a simple randomized solution: a randomly selected point is a correct solution with constant probability, and its correctness can be verified in linear time. However, the deterministic complexity of this problem was not known. In this paper, for any L^p vector space, we show an O(nd)-time solution with a ball of radius O(r) for a fixed alpha > 1/2, and for any normed vector space, we show an O(nd)-time solution with a ball of radius O(r) when alpha > 1/2 as well as an O(nd log^{(k)}(n))-time solution with a ball of radius O(r) for all alpha > 0, k in N, where log^{(k)}(n) represents the kth iterated logarithm, assuming distance computation and vector space operations take O(d) time. For an arbitrary metric space, we show for any C in N an O(n^{1+1/C})-time solution that finds a ball of radius 2Cr, assuming distance computation between any pair of points takes O(1)-time, and show that for any alpha, C, an O(n^{1+1/C})-time solution that finds a ball of radius ((2C-3)(1-alpha)-1)r cannot exist.

Cite as

Shyam Narayanan. Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{narayanan:LIPIcs.APPROX-RANDOM.2018.21,
  author =	{Narayanan, Shyam},
  title =	{{Deterministic O(1)-Approximation Algorithms to 1-Center Clustering with Outliers}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.21},
  URN =		{urn:nbn:de:0030-drops-94253},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.21},
  annote =	{Keywords: Deterministic, Approximation Algorithm, Cluster, Statistic}
}
  • Refine by Author
  • 6 Narayanan, Shyam
  • 2 Abbasi, Fateme
  • 2 Byrka, Jarosław
  • 2 Jiang, Shaofeng H.-C.
  • 1 Adamczyk, Marek
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Facility location and clustering
  • 3 Mathematics of computing → Probabilistic algorithms
  • 3 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Online algorithms
  • 2 Theory of computation → Computational geometry
  • Show More...

  • Refine by Keyword
  • 3 approximation algorithms
  • 2 facility location
  • 1 Approximation Algorithm
  • 1 Chaining
  • 1 Cluster
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 5 2024
  • 2 2021
  • 2 2023
  • 1 2018
  • 1 2019
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail