14 Search Results for "Potechin, Aaron"


Document
Track A: Algorithms, Complexity and Games
Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle

Authors: Aaron Potechin and Aaron Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show that the minimum total coefficient size of a Nullstellensatz proof of the pigeonhole principle on n+1 pigeons and n holes is 2^{Θ(n)}. We also investigate the ordering principle and construct an explicit Nullstellensatz proof for the ordering principle on n elements with total coefficient size 2ⁿ - n.

Cite as

Aaron Potechin and Aaron Zhang. Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{potechin_et_al:LIPIcs.ICALP.2024.117,
  author =	{Potechin, Aaron and Zhang, Aaron},
  title =	{{Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.117},
  URN =		{urn:nbn:de:0030-drops-202604},
  doi =		{10.4230/LIPIcs.ICALP.2024.117},
  annote =	{Keywords: Proof complexity, Nullstellensatz, pigeonhole principle, coefficient size}
}
Document
On the Power of Nonstandard Quantum Oracles

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We study how the choices made when designing an oracle affect the complexity of quantum property testing problems defined relative to this oracle. We encode a regular graph of even degree as an invertible function f, and present f in different oracle models. We first give a one-query QMA protocol to test if a graph encoded in f has a small disconnected subset. We then use representation theory to show that no classical witness can help a quantum verifier efficiently decide this problem relative to an in-place oracle. Perhaps surprisingly, a simple modification to the standard oracle prevents a quantum verifier from efficiently deciding this problem, even with access to an unbounded witness.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. On the Power of Nonstandard Quantum Oracles. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 11:1-11:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.TQC.2023.11,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{On the Power of Nonstandard Quantum Oracles}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{11:1--11:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.11},
  URN =		{urn:nbn:de:0030-drops-183215},
  doi =		{10.4230/LIPIcs.TQC.2023.11},
  annote =	{Keywords: quantum complexity, QCMA, expander graphs, representation theory}
}
Document
Track A: Algorithms, Complexity and Games
Ellipsoid Fitting up to a Constant

Authors: Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/log^O(1) d via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension.

Cite as

Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu. Ellipsoid Fitting up to a Constant. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hsieh_et_al:LIPIcs.ICALP.2023.78,
  author =	{Hsieh, Jun-Ting and Kothari, Pravesh K. and Potechin, Aaron and Xu, Jeff},
  title =	{{Ellipsoid Fitting up to a Constant}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.78},
  URN =		{urn:nbn:de:0030-drops-181304},
  doi =		{10.4230/LIPIcs.ICALP.2023.78},
  annote =	{Keywords: Semidefinite programming, random matrices, average-case complexity}
}
Document
Trading Time and Space in Catalytic Branching Programs

Authors: James Cook and Ian Mertz

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
An m-catalytic branching program (Girard, Koucký, McKenzie 2015) is a set of m distinct branching programs for f which are permitted to share internal (i.e. non-source non-sink) nodes. While originally introduced as a non-uniform analogue to catalytic space, this also gives a natural notion of amortized non-uniform space complexity for f, namely the smallest value |G|/m for an m-catalytic branching program G for f (Potechin 2017). Potechin (2017) showed that every function f has amortized size O(n), witnessed by an m-catalytic branching program where m = 2^(2ⁿ-1). We recreate this result by defining a catalytic algorithm for evaluating polynomials using a large amount of space but O(n) time. This allows us to balance this with previously known algorithms which are efficient with respect to space at the cost of time (Cook, Mertz 2020, 2021). We show that for any ε ≥ 2n^(-1), every function f has an m-catalytic branching program of size O_ε(mn), where m = 2^(2^(ε n)). We similarly recreate an improved result due to Robere and Zuiddam (2021), and show that for d ≤ n and ε ≥ 2d^(-1), the same result holds for m = 2^binom(n, ≤ ε d) as long as f is a degree-d polynomial over 𝔽₂. We also show that for certain classes of functions, m can be reduced to 2^(poly n) while still maintaining linear or quasi-linear amortized size. In the other direction, we bound the necessary length, and by extension the amortized size, of any permutation branching program for an arbitrary function between 3n and 4n-4.

Cite as

James Cook and Ian Mertz. Trading Time and Space in Catalytic Branching Programs. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 8:1-8:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.CCC.2022.8,
  author =	{Cook, James and Mertz, Ian},
  title =	{{Trading Time and Space in Catalytic Branching Programs}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{8:1--8:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.8},
  URN =		{urn:nbn:de:0030-drops-165708},
  doi =		{10.4230/LIPIcs.CCC.2022.8},
  annote =	{Keywords: complexity theory, branching programs, amortized, space complexity, catalytic computation}
}
Document
Track A: Algorithms, Complexity and Games
Expander Random Walks: The General Case and Limitations

Authors: Gil Cohen, Dor Minzer, Shir Peleg, Aaron Potechin, and Amnon Ta-Shma

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Cohen, Peri and Ta-Shma [Gil Cohen et al., 2021] considered the following question: Assume the vertices of an expander graph are labelled by ± 1. What "test" functions f : {±1}^t → {±1} can or cannot distinguish t independent samples from those obtained by a random walk? [Gil Cohen et al., 2021] considered only balanced labellings, and proved that for all symmetric functions the distinguishability goes down to zero with the spectral gap λ of the expander G. In addition, [Gil Cohen et al., 2021] show that functions computable by AC⁰ circuits are fooled by expanders with vanishing spectral expansion. We continue the study of this question. We generalize the result to all labelling, not merely balanced ones. We also improve the upper bound on the error of symmetric functions. More importantly, we give a matching lower bound and show a symmetric function with distinguishability going down to zero with λ but not with t. Moreover, we prove a lower bound on the error of functions in AC⁰ in particular, we prove that a random walk on expanders with constant spectral gap does not fool AC⁰.

Cite as

Gil Cohen, Dor Minzer, Shir Peleg, Aaron Potechin, and Amnon Ta-Shma. Expander Random Walks: The General Case and Limitations. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ICALP.2022.43,
  author =	{Cohen, Gil and Minzer, Dor and Peleg, Shir and Potechin, Aaron and Ta-Shma, Amnon},
  title =	{{Expander Random Walks: The General Case and Limitations}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.43},
  URN =		{urn:nbn:de:0030-drops-163849},
  doi =		{10.4230/LIPIcs.ICALP.2022.43},
  annote =	{Keywords: Expander Graphs, Random Walks, Lower Bounds}
}
Document
Almost-Orthogonal Bases for Inner Product Polynomials

Authors: Chris Jones and Aaron Potechin

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this paper, we consider low-degree polynomials of inner products between a collection of random vectors. We give an almost orthogonal basis for this vector space of polynomials when the random vectors are Gaussian, spherical, or Boolean. In all three cases, our basis admits an interesting combinatorial description based on the topology of the underlying graph of inner products. We also analyze the expected value of the product of two polynomials in our basis. In all three cases, we show that this expected value can be expressed in terms of collections of matchings on the underlying graph of inner products. In the Gaussian and Boolean cases, we show that this expected value is always non-negative. In the spherical case, we show that this expected value can be negative but we conjecture that if the underlying graph of inner products is planar then this expected value will always be non-negative.

Cite as

Chris Jones and Aaron Potechin. Almost-Orthogonal Bases for Inner Product Polynomials. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 89:1-89:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jones_et_al:LIPIcs.ITCS.2022.89,
  author =	{Jones, Chris and Potechin, Aaron},
  title =	{{Almost-Orthogonal Bases for Inner Product Polynomials}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{89:1--89:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.89},
  URN =		{urn:nbn:de:0030-drops-156853},
  doi =		{10.4230/LIPIcs.ITCS.2022.89},
  annote =	{Keywords: Orthogonal polynomials, Fourier analysis, combinatorics}
}
Document
SOS Lower Bound for Exact Planted Clique

Authors: Shuo Pang

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
We prove a SOS degree lower bound for the planted clique problem on the Erdös-Rényi random graph G(n,1/2). The bound we get is degree d = Ω(ε²log n/log log n) for clique size ω = n^{1/2-ε}, which is almost tight. This improves the result of [Barak et al., 2019] for the "soft" version of the problem, where the family of the equality-axioms generated by x₁+...+x_n = ω is relaxed to one inequality x₁+...+x_n ≥ ω. As a technical by-product, we also "naturalize" certain techniques that were developed and used for the relaxed problem. This includes a new way to define the pseudo-expectation, and a more robust method to solve out the coarse diagonalization of the moment matrix.

Cite as

Shuo Pang. SOS Lower Bound for Exact Planted Clique. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 26:1-26:63, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{pang:LIPIcs.CCC.2021.26,
  author =	{Pang, Shuo},
  title =	{{SOS Lower Bound for Exact Planted Clique}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{26:1--26:63},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.26},
  URN =		{urn:nbn:de:0030-drops-143000},
  doi =		{10.4230/LIPIcs.CCC.2021.26},
  annote =	{Keywords: Sum-of-Squares, planted clique, random graphs, average-case lower bound}
}
Document
Track A: Algorithms, Complexity and Games
SoS Certification for Symmetric Quadratic Functions and Its Connection to Constrained Boolean Hypercube Optimization

Authors: Adam Kurpisz, Aaron Potechin, and Elias Samuel Wirth

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We study the rank of the Sum of Squares (SoS) hierarchy over the Boolean hypercube for Symmetric Quadratic Functions (SQFs) in n variables with roots placed in points k-1 and k. Functions of this type have played a central role in deepening the understanding of the performance of the SoS method for various unconstrained Boolean hypercube optimization problems, including the Max Cut problem. Recently, Lee, Prakash, de Wolf, and Yuen proved a lower bound on the SoS rank for SQFs of Ω(√{k(n-k)}) and conjectured the lower bound of Ω(n) by similarity to a polynomial representation of the n-bit OR function. Leveraging recent developments on Chebyshev polynomials, we refute the Lee-Prakash-de Wolf-Yuen conjecture and prove that the SoS rank for SQFs is at most O(√{nk}log(n)). We connect this result to two constrained Boolean hypercube optimization problems. First, we provide a degree O(√n) SoS certificate that matches the known SoS rank lower bound for an instance of Min Knapsack, a problem that was intensively studied in the literature. Second, we study an instance of the Set Cover problem for which Bienstock and Zuckerberg conjectured an SoS rank lower bound of n/4. We refute the Bienstock-Zuckerberg conjecture and provide a degree O(√nlog(n)) SoS certificate for this problem.

Cite as

Adam Kurpisz, Aaron Potechin, and Elias Samuel Wirth. SoS Certification for Symmetric Quadratic Functions and Its Connection to Constrained Boolean Hypercube Optimization. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kurpisz_et_al:LIPIcs.ICALP.2021.90,
  author =	{Kurpisz, Adam and Potechin, Aaron and Wirth, Elias Samuel},
  title =	{{SoS Certification for Symmetric Quadratic Functions and Its Connection to Constrained Boolean Hypercube Optimization}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.90},
  URN =		{urn:nbn:de:0030-drops-141595},
  doi =		{10.4230/LIPIcs.ICALP.2021.90},
  annote =	{Keywords: symmetric quadratic functions, SoS certificate, hypercube optimization, semidefinite programming}
}
Document
APPROX
On the Approximability of Presidential Type Predicates

Authors: Neng Huang and Aaron Potechin

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Given a predicate P: {-1, 1}^k → {-1, 1}, let CSP(P) be the set of constraint satisfaction problems whose constraints are of the form P. We say that P is approximable if given a nearly satisfiable instance of CSP(P), there exists a probabilistic polynomial time algorithm that does better than a random assignment. Otherwise, we say that P is approximation resistant. In this paper, we analyze presidential type predicates, which are balanced linear threshold functions where all of the variables except the first variable (the president) have the same weight. We show that almost all presidential type predicates P are approximable. More precisely, we prove the following result: for any δ₀ > 0, there exists a k₀ such that if k ≥ k₀, δ ∈ (δ₀,1 - 2/k], and {δ}k + k - 1 is an odd integer then the presidential type predicate P(x) = sign({δ}k{x₁} + ∑_{i = 2}^{k} {x_i}) is approximable. To prove this, we construct a rounding scheme that makes use of biases and pairwise biases. We also give evidence that using pairwise biases is necessary for such rounding schemes.

Cite as

Neng Huang and Aaron Potechin. On the Approximability of Presidential Type Predicates. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 58:1-58:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.APPROX/RANDOM.2020.58,
  author =	{Huang, Neng and Potechin, Aaron},
  title =	{{On the Approximability of Presidential Type Predicates}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{58:1--58:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.58},
  URN =		{urn:nbn:de:0030-drops-126612},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.58},
  annote =	{Keywords: constraint satisfaction problems, approximation algorithms, presidential type predicates}
}
Document
Sum of Squares Bounds for the Ordering Principle

Authors: Aaron Potechin

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
In this paper, we analyze the sum of squares hierarchy (SOS) on the ordering principle on n elements (which has N = Θ(n²) variables). We prove that degree O(√nlog(n)) SOS can prove the ordering principle. We then show that this upper bound is essentially tight by proving that for any ε > 0, SOS requires degree Ω(n^(1/2 - ε)) to prove the ordering principle.

Cite as

Aaron Potechin. Sum of Squares Bounds for the Ordering Principle. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 38:1-38:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{potechin:LIPIcs.CCC.2020.38,
  author =	{Potechin, Aaron},
  title =	{{Sum of Squares Bounds for the Ordering Principle}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{38:1--38:37},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.38},
  URN =		{urn:nbn:de:0030-drops-125900},
  doi =		{10.4230/LIPIcs.CCC.2020.38},
  annote =	{Keywords: sum of squares hierarchy, proof complexity, ordering principle}
}
Document
Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs

Authors: Albert Atserias and Tuomas Hakoniemi

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We show that if a system of degree-k polynomial constraints on n Boolean variables has a Sums-of-Squares (SOS) proof of unsatisfiability with at most s many monomials, then it also has one whose degree is of the order of the square root of n log s plus k. A similar statement holds for the more general Positivstellensatz (PS) proofs. This establishes size-degree trade-offs for SOS and PS that match their analogues for weaker proof systems such as Resolution, Polynomial Calculus, and the proof systems for the LP and SDP hierarchies of Lovász and Schrijver. As a corollary to this, and to the known degree lower bounds, we get optimal integrality gaps for exponential size SOS proofs for sparse random instances of the standard NP-hard constraint optimization problems. We also get exponential size SOS lower bounds for Tseitin and Knapsack formulas. The proof of our main result relies on a zero-gap duality theorem for pre-ordered vector spaces that admit an order unit, whose specialization to PS and SOS may be of independent interest.

Cite as

Albert Atserias and Tuomas Hakoniemi. Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{atserias_et_al:LIPIcs.CCC.2019.24,
  author =	{Atserias, Albert and Hakoniemi, Tuomas},
  title =	{{Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.24},
  URN =		{urn:nbn:de:0030-drops-108464},
  doi =		{10.4230/LIPIcs.CCC.2019.24},
  annote =	{Keywords: Proof complexity, semialgebraic proof systems, Sums-of-Squares, Positivstellensatz, trade-offs, lower bounds, monomial size, degree}
}
Document
Sum of Squares Lower Bounds from Symmetry and a Good Story

Authors: Aaron Potechin

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
In this paper, we develop machinery which makes it much easier to prove sum of squares lower bounds when the problem is symmetric under permutations of [1,n] and the unsatisfiability of our problem comes from integrality arguments, i.e. arguments that an expression must be an integer. Roughly speaking, to prove SOS lower bounds with our machinery it is sufficient to verify that the answer to the following three questions is yes: 1) Are there natural pseudo-expectation values for the problem? 2) Are these pseudo-expectation values rational functions of the problem parameters? 3) Are there sufficiently many values of the parameters for which these pseudo-expectation values correspond to the actual expected values over a distribution of solutions which is the uniform distribution over permutations of a single solution? We demonstrate our machinery on three problems, the knapsack problem analyzed by Grigoriev, the MOD 2 principle (which says that the complete graph K_n has no perfect matching when n is odd), and the following Turan type problem: Minimize the number of triangles in a graph G with a given edge density. For knapsack, we recover Grigoriev's lower bound exactly. For the MOD 2 principle, we tighten Grigoriev's linear degree sum of squares lower bound, making it exact. Finally, for the triangle problem, we prove a sum of squares lower bound for finding the minimum triangle density. This lower bound is completely new and gives a simple example where constant degree sum of squares methods have a constant factor error in estimating graph densities.

Cite as

Aaron Potechin. Sum of Squares Lower Bounds from Symmetry and a Good Story. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 61:1-61:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{potechin:LIPIcs.ITCS.2019.61,
  author =	{Potechin, Aaron},
  title =	{{Sum of Squares Lower Bounds from Symmetry and a Good Story}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{61:1--61:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.61},
  URN =		{urn:nbn:de:0030-drops-101545},
  doi =		{10.4230/LIPIcs.ITCS.2019.61},
  annote =	{Keywords: Sum of squares hierarchy, proof complexity, graph theory, lower bounds}
}
Document
A Note on Amortized Branching Program Complexity

Authors: Aaron Potechin

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
In this paper, we show that while almost all functions require exponential size branching programs to compute, for all functions f there is a branching program computing a doubly exponential number of copies of f which has linear size per copy of f. This result disproves a conjecture about non-uniform catalytic computation, rules out a certain type of bottleneck argument for proving non-monotone space lower bounds, and can be thought of as a constructive analogue of Razborov's result that submodular complexity measures have maximum value O(n).

Cite as

Aaron Potechin. A Note on Amortized Branching Program Complexity. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{potechin:LIPIcs.CCC.2017.4,
  author =	{Potechin, Aaron},
  title =	{{A Note on Amortized Branching Program Complexity}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.4},
  URN =		{urn:nbn:de:0030-drops-75448},
  doi =		{10.4230/LIPIcs.CCC.2017.4},
  annote =	{Keywords: branching programs, space complexity, amortization}
}
Document
Bounds on the Norms of Uniform Low Degree Graph Matrices

Authors: Dhruv Medarametla and Aaron Potechin

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinatorial optimization problems. However, its performance is only partially understood. Improving our understanding of the sum of squares hierarchy is a major open problem in computational complexity theory. A key component of analyzing the sum of squares hierarchy is understanding the behavior of certain matrices whose entries are random but not independent. For these matrices, there is a random input graph and each entry of the matrix is a low degree function of the edges of this input graph. Moreoever, these matrices are generally invariant (as a function of the input graph) when we permute the vertices of the input graph. In this paper, we bound the norms of all such matrices up to a polylogarithmic factor.

Cite as

Dhruv Medarametla and Aaron Potechin. Bounds on the Norms of Uniform Low Degree Graph Matrices. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 40:1-40:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{medarametla_et_al:LIPIcs.APPROX-RANDOM.2016.40,
  author =	{Medarametla, Dhruv and Potechin, Aaron},
  title =	{{Bounds on the Norms of Uniform Low Degree Graph Matrices}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{40:1--40:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.40},
  URN =		{urn:nbn:de:0030-drops-66638},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.40},
  annote =	{Keywords: sum of squares hierarchy, matrix norm bounds}
}
  • Refine by Author
  • 10 Potechin, Aaron
  • 1 Atserias, Albert
  • 1 Bassirian, Roozbeh
  • 1 Cohen, Gil
  • 1 Cook, James
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Proof complexity
  • 2 branching programs
  • 2 lower bounds
  • 2 proof complexity
  • 2 space complexity
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 3 2022
  • 2 2019
  • 2 2020
  • 2 2021
  • 2 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail