8 Search Results for "Ramachandran, Vijaya"


Document
Near Optimal Dual Fault Tolerant Distance Oracle

Authors: Dipan Dey and Manoj Gupta

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We present a dual fault-tolerant distance oracle for undirected and unweighted graphs. Given a set F of two edges, as well as a source node s and a destination node t, our oracle returns the length of the shortest path from s to t that avoids F in O(1) time with a high probability. The space complexity of our oracle is Õ(n²) , making it nearly optimal in terms of both space and query time. Prior to our work, Pettie and Duan [SODA 2009] designed a dual fault-tolerant distance oracle that required Õ(n²) space and O(log n) query time. In addition to improving the query time, our oracle is much simpler than the previous approach.

Cite as

Dipan Dey and Manoj Gupta. Near Optimal Dual Fault Tolerant Distance Oracle. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 45:1-45:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dey_et_al:LIPIcs.ESA.2024.45,
  author =	{Dey, Dipan and Gupta, Manoj},
  title =	{{Near Optimal Dual Fault Tolerant Distance Oracle}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{45:1--45:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.45},
  URN =		{urn:nbn:de:0030-drops-211164},
  doi =		{10.4230/LIPIcs.ESA.2024.45},
  annote =	{Keywords: Distance Sensitive Oracle, Dual Fault Distance Oracle}
}
Document
Separator Based Data Reduction for the Maximum Cut Problem

Authors: Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Preprocessing is an important ingredient for solving the maximum cut problem to optimality on real-world graphs. In our work, we derive a new framework for data reduction rules based on vertex separators. Vertex separators are sets of vertices, whose removal increases the number of connected components of a graph. Certain small separators can be found in linear time, allowing for an efficient combination of our framework with existing data reduction rules. Additionally, we complement known data reduction rules for triangles with a new one. In our computational experiments on established benchmark instances, we clearly show the effectiveness and efficiency of our proposed data reduction techniques. The resulting graphs are significantly smaller than in earlier studies and sometimes no vertex is left, so preprocessing has fully solved the instance to optimality. The introduced techniques are also shown to offer significant speedup potential for an exact state-of-the-art solver and to help a state-of-the-art heuristic to produce solutions of higher quality.

Cite as

Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann. Separator Based Data Reduction for the Maximum Cut Problem. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charfreitag_et_al:LIPIcs.SEA.2024.4,
  author =	{Charfreitag, Jonas and Dahn, Christine and Kaibel, Michael and Mayer, Philip and Mutzel, Petra and Sch\"{u}rmann, Lukas},
  title =	{{Separator Based Data Reduction for the Maximum Cut Problem}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.4},
  URN =		{urn:nbn:de:0030-drops-203698},
  doi =		{10.4230/LIPIcs.SEA.2024.4},
  annote =	{Keywords: Data Reduction, Maximum Cut, Vertex Separators}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

Authors: Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.

Cite as

Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan. Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 98:1-98:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{khanna_et_al:LIPIcs.ICALP.2024.98,
  author =	{Khanna, Sanjeev and Putterman, Aaron (Louie) and Sudan, Madhu},
  title =	{{Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{98:1--98:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.98},
  URN =		{urn:nbn:de:0030-drops-202410},
  doi =		{10.4230/LIPIcs.ICALP.2024.98},
  annote =	{Keywords: Sparsification, sketching, hypergraphs}
}
Document
Scalable Data Structures (Dagstuhl Seminar 23211)

Authors: Gerth Stølting Brodal, John Iacono, László Kozma, Vijaya Ramachandran, and Justin Dallant

Published in: Dagstuhl Reports, Volume 13, Issue 5 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23211 "Scalable Data Structures". Data structures enable the organization, storage and retrieval of data across a variety of applications. As they are deployed at unprecedented scales, data structures can profoundly affect the efficiency of almost all computational tasks. The study of data structures thus continues to be an important and active area of research with an interplay between data structure design and analysis, developments in computer hardware, and the needs of modern applications. The extended abstracts included in this report give a snapshot of the current state of research on scalable data structures and establish directions for future developments in the field.

Cite as

Gerth Stølting Brodal, John Iacono, László Kozma, Vijaya Ramachandran, and Justin Dallant. Scalable Data Structures (Dagstuhl Seminar 23211). In Dagstuhl Reports, Volume 13, Issue 5, pp. 114-135, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{brodal_et_al:DagRep.13.5.114,
  author =	{Brodal, Gerth St{\o}lting and Iacono, John and Kozma, L\'{a}szl\'{o} and Ramachandran, Vijaya and Dallant, Justin},
  title =	{{Scalable Data Structures (Dagstuhl Seminar 23211)}},
  pages =	{114--135},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{5},
  editor =	{Brodal, Gerth St{\o}lting and Iacono, John and Kozma, L\'{a}szl\'{o} and Ramachandran, Vijaya and Dallant, Justin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.5.114},
  URN =		{urn:nbn:de:0030-drops-193676},
  doi =		{10.4230/DagRep.13.5.114},
  annote =	{Keywords: algorithms, big data, computational models, data structures, GPU computing, parallel computation}
}
Document
Dynamic Planar Embedding Is in DynFO

Authors: Samir Datta, Asif Khan, and Anish Mukherjee

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Planar Embedding is a drawing of a graph on the plane such that the edges do not intersect each other except at the vertices. We know that testing the planarity of a graph and computing its embedding (if it exists), can efficiently be computed, both sequentially [John E. Hopcroft and Robert Endre Tarjan, 1974] and in parallel [Vijaya Ramachandran and John H. Reif, 1994], when the entire graph is presented as input. In the dynamic setting, the input graph changes one edge at a time through insertion and deletions and planarity testing/embedding has to be updated after every change. By storing auxilliary information we can improve the complexity of dynamic planarity testing/embedding over the obvious recomputation from scratch. In the sequential dynamic setting, there has been a series of works [David Eppstein et al., 1996; Giuseppe F. Italiano et al., 1993; Jacob Holm et al., 2018; Jacob Holm and Eva Rotenberg, 2020], culminating in the breakthrough result of polylog(n) sequential time (amortized) planarity testing algorithm of Holm and Rotenberg [Jacob Holm and Eva Rotenberg, 2020]. In this paper we study planar embedding through the lens of DynFO, a parallel dynamic complexity class introduced by Patnaik et al [Sushant Patnaik and Neil Immerman, 1997] (also [Guozhu Dong et al., 1995]). We show that it is possible to dynamically maintain whether an edge can be inserted to a planar graph without causing non-planarity in DynFO. We extend this to show how to maintain an embedding of a planar graph under both edge insertions and deletions, while rejecting edge insertions that violate planarity. Our main idea is to maintain embeddings of only the triconnected components and a special two-colouring of separating pairs that enables us to side-step cascading flips when embedding of a biconnected planar graph changes, a major issue for sequential dynamic algorithms [Jacob Holm and Eva Rotenberg, 2020; Jacob Holm and Eva Rotenberg, 2020].

Cite as

Samir Datta, Asif Khan, and Anish Mukherjee. Dynamic Planar Embedding Is in DynFO. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 39:1-39:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.MFCS.2023.39,
  author =	{Datta, Samir and Khan, Asif and Mukherjee, Anish},
  title =	{{Dynamic Planar Embedding Is in DynFO}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{39:1--39:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.39},
  URN =		{urn:nbn:de:0030-drops-185736},
  doi =		{10.4230/LIPIcs.MFCS.2023.39},
  annote =	{Keywords: Dynamic Complexity, Planar graphs, Planar embedding}
}
Document
Scalable Data Structures (Dagstuhl Seminar 21071)

Authors: Gerth Stølting Brodal, John Iacono, Markus E. Nebel, and Vijaya Ramachandran

Published in: Dagstuhl Reports, Volume 11, Issue 1 (2021)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 21071 "Scalable Data Structure". Even if the field of data structures is quite mature, new trends and limitations in computer hardware together with the ever-increasing amounts of data that need to be processed raise new questions with respect to efficiency and continuously challenge the existing models of computation. Thermal and electrical power constraints have caused technology to reach "the power wall" with stagnating single processor performance, meaning that all nontrivial applications need to address scalability with multiple processors, a memory hierarchy and other communication challenges. Scalable data structures are pivotal to this process since they form the backbone of the algorithms driving these applications. The extended abstracts included in this report contain both recent state of the art advances and lay the foundation for new directions within data structures research.

Cite as

Gerth Stølting Brodal, John Iacono, Markus E. Nebel, and Vijaya Ramachandran. Scalable Data Structures (Dagstuhl Seminar 21071). In Dagstuhl Reports, Volume 11, Issue 1, pp. 1-23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@Article{brodal_et_al:DagRep.11.1.1,
  author =	{Brodal, Gerth St{\o}lting and Iacono, John and Nebel, Markus E. and Ramachandran, Vijaya},
  title =	{{Scalable Data Structures (Dagstuhl Seminar 21071)}},
  pages =	{1--23},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2021},
  volume =	{11},
  number =	{1},
  editor =	{Brodal, Gerth St{\o}lting and Iacono, John and Nebel, Markus E. and Ramachandran, Vijaya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.11.1.1},
  URN =		{urn:nbn:de:0030-drops-143481},
  doi =		{10.4230/DagRep.11.1.1},
  annote =	{Keywords: algorithms, big data, data structures, GPU computing, large data sets, models of computation, parallel algorithms}
}
Document
Finding k Simple Shortest Paths and Cycles

Authors: Udit Agarwal and Vijaya Ramachandran

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We present algorithms and techniques for several problems related to finding multiple simple shortest paths and cycles in a graph. Our main result is a new algorithm for finding k simple shortest paths for all pairs of vertices in a weighted directed graph G = (V, E). For k = 2 our algorithm runs in O(mn + n^2 log n) time where m and n are the number of edges and vertices in G. For k = 3 our algorithm runs in O(mn^2 + n^3 log n) time, which is almost a factor of n faster than the best previous algorithm. Our approach is based on forming suitable path extensions to find simple shortest paths; this method is different from the 'detour finding' technique used in most of the prior work on simple shortest paths, replacement paths, and distance sensitivity oracles. We present new algorithms for generating simple cycles and simple paths in G in non-decreasing order of their weight. The algorithm for generating simple paths is much faster,and uses another variant of path extensions.

Cite as

Udit Agarwal and Vijaya Ramachandran. Finding k Simple Shortest Paths and Cycles. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 8:1-8:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ISAAC.2016.8,
  author =	{Agarwal, Udit and Ramachandran, Vijaya},
  title =	{{Finding k Simple Shortest Paths and Cycles}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{8:1--8:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.8},
  URN =		{urn:nbn:de:0030-drops-67830},
  doi =		{10.4230/LIPIcs.ISAAC.2016.8},
  annote =	{Keywords: Graph Algorithms, Shortest Paths, k Simple Shortest Paths, Enumerat- ing Simple Cycles, Enumerating Simple Paths}
}
  • Refine by Author
  • 3 Ramachandran, Vijaya
  • 2 Brodal, Gerth Stølting
  • 2 Iacono, John
  • 1 Agarwal, Udit
  • 1 Charfreitag, Jonas
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Data structures design and analysis
  • 2 Theory of computation → Sketching and sampling
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Mathematics of computing → Solvers
  • Show More...

  • Refine by Keyword
  • 2 GPU computing
  • 2 algorithms
  • 2 big data
  • 2 data structures
  • 1 Data Reduction
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 4 2024
  • 2 2023
  • 1 2016
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail