13 Search Results for "Serrano-Cases, Alejandro"


Document
Unweighted Geometric Hitting Set for Line-Constrained Disks and Related Problems

Authors: Gang Liu and Haitao Wang

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a set P of n points and a set S of m disks in the plane, the disk hitting set problem asks for a smallest subset of P such that every disk of S contains at least one point in the subset. The problem is NP-hard. This paper considers a line-constrained version in which all disks have their centers on a line. We present an O(mlog²n+(n+m)log(n+m)) time algorithm for the problem. This improves the previous result of O(m²log m+(n+m)log(n+m)) time for the weighted case of the problem where every point of P has a weight and the objective is to minimize the total weight of the hitting set. Our algorithm also solves a more general line-separable problem with a single intersection property: The points of P and the disk centers are separated by a line 𝓁 and the boundary of every two disks intersect at most once on the side of 𝓁 containing P.

Cite as

Gang Liu and Haitao Wang. Unweighted Geometric Hitting Set for Line-Constrained Disks and Related Problems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 68:1-68:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.68,
  author =	{Liu, Gang and Wang, Haitao},
  title =	{{Unweighted Geometric Hitting Set for Line-Constrained Disks and Related Problems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{68:1--68:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.68},
  URN =		{urn:nbn:de:0030-drops-206240},
  doi =		{10.4230/LIPIcs.MFCS.2024.68},
  annote =	{Keywords: hitting set, line-constrained, line-separable, unit disks, half-planes, coverage}
}
Document
Invited Paper
Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip

Authors: Gianluca Brilli, Giacomo Valente, Alessandro Capotondi, Tania Di Mascio, and Andrea Marongiu

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
Main memory sharing in commercial, FPGA-based Heterogeneous System on Chips (HeSoCs) can cause significant interference, and ultimately severe slowdown of the executing workload, which bars the adoption of such systems in the context of time-critical applications. Bandwidth regulation approaches based on monitoring and throttling are widely adopted also in commercial hardware to improve the system quality of service (QoS), and previous work has shown that the finer the granularity of the mechanism, the more effective the QoS control. Different mechanisms, however, might exploit more or less effectively the available residual memory bandwidth, provided that the QoS requirement is satisfied. In this paper we present an exhaustive experimental evaluation of how three bandwidth regulation mechanisms with coarse, fine and ultra-fine granularity compare in terms of exploitation of the system memory bandwidth. Our results show that a very fine-grained regulation mechanism might experience worse system-level memory bandwidth exploitation compared to a coarser-grained approach.

Cite as

Gianluca Brilli, Giacomo Valente, Alessandro Capotondi, Tania Di Mascio, and Andrea Marongiu. Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 5:1-5:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brilli_et_al:OASIcs.WCET.2024.5,
  author =	{Brilli, Gianluca and Valente, Giacomo and Capotondi, Alessandro and Di Mascio, Tania and Marongiu, Andrea},
  title =	{{Invited Paper: On the Granularity of Bandwidth Regulation in FPGA-Based Heterogeneous Systems on Chip}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{5:1--5:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.5},
  URN =		{urn:nbn:de:0030-drops-204732},
  doi =		{10.4230/OASIcs.WCET.2024.5},
  annote =	{Keywords: Bandwidth Regulation, System-on-Chip, FPGA}
}
Document
Böhm and Taylor for All!

Authors: Aloÿs Dufour and Damiano Mazza

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Böhm approximations, used in the definition of Böhm trees, are a staple of the semantics of the lambda-calculus. Introduced more recently by Ehrhard and Regnier, Taylor approximations provide a quantitative account of the behavior of programs and are well-known to be connected to intersection types. The key relation between these two notions of approximations is a commutation theorem, roughly stating that Taylor approximations of Böhm trees are the same as Böhm trees of Taylor approximations. Böhm and Taylor approximations are available for several variants or extensions of the lambda-calculus and, in some cases, commutation theorems are known. In this paper, we define Böhm and Taylor approximations and prove the commutation theorem in a very general setting. We also introduce (non-idempotent) intersection types at this level of generality. From this, we show how the commutation theorem and intersection types may be applied to any calculus embedding in a sufficiently nice way into our general calculus. All known Böhm-Taylor commutation theorems, as well as new ones, follow by this uniform construction.

Cite as

Aloÿs Dufour and Damiano Mazza. Böhm and Taylor for All!. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dufour_et_al:LIPIcs.FSCD.2024.29,
  author =	{Dufour, Alo\"{y}s and Mazza, Damiano},
  title =	{{B\"{o}hm and Taylor for All!}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.29},
  URN =		{urn:nbn:de:0030-drops-203582},
  doi =		{10.4230/LIPIcs.FSCD.2024.29},
  annote =	{Keywords: Linear logic, Differential linear logic, Taylor expansion of lambda-terms, B\"{o}hm trees, Process calculi}
}
Document
Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance demands. This trend marks a shift from their traditionally simple, deterministic designs to more complex and inherently less predictable architectures. While shared resource contention is well-studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs introduces unique challenges and characteristics that existing research has not fully explored. In this paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based platforms, aiming to identify the sources of contention on systems typically lacking these problems. We empirically demonstrate substantial contention effects across different MCU architectures (i.e., from single- to multi-core configurations), highlighting significant application slowdowns. Notably, we observe that slowdowns can reach several orders of magnitude, with the most extreme cases showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we propose and evaluate muTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA) and TPA-based runtime control specifically tailored to MCUs. muTPArtc is an MCU-specialized TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications' progress, detect, and mitigate timing violations. Our results demonstrate that muTPArtc effectively manages performance degradation due to interference, requiring only minimal modifications to the build pipeline and no changes to the source code of the target application, while incurring minor overheads.

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.ECRTS.2024.5,
  author =	{Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
  title =	{{Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.5},
  URN =		{urn:nbn:de:0030-drops-203088},
  doi =		{10.4230/LIPIcs.ECRTS.2024.5},
  annote =	{Keywords: multi-core microcontrollers, shared resources contention, progress-aware regulation}
}
Document
The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs

Authors: Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Following the needs of industrial applications, virtualization has emerged as one of the most effective approaches for the consolidation of mixed-criticality systems while meeting tight constraints in terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked. Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/O devices allocated to virtual machines that run on primary cores, yielding full control and responsibility over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm for the holistic management of heterogeneous platforms. The model generalizes the features of real-time static partitioning hypervisors to enable the execution of virtual machines on processors with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor ensures temporal and spatial isolation between virtual machines by integrating and leveraging a variety of hardware and software protection mechanisms. The presented approach not only expands the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time performance for mixed-criticality applications. A full open-source reference implementation of the Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the solution, including enabling the seamless launch of virtual machines on different ISAs and extending spatial/temporal isolation to heterogenous cores with enhanced regulation policies.

Cite as

Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque. The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 7:1-7:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ottaviano_et_al:LIPIcs.ECRTS.2024.7,
  author =	{Ottaviano, Daniele and Ciraolo, Francesco and Mancuso, Renato and Cinque, Marcello},
  title =	{{The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{7:1--7:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.7},
  URN =		{urn:nbn:de:0030-drops-203107},
  doi =		{10.4230/LIPIcs.ECRTS.2024.7},
  annote =	{Keywords: Mixed-Criticality, Embedded Virtualization, Real-Time Systems, MPSoCs}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications

Authors: Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder

Published in: OASIcs, Volume 114, 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)


Abstract
This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy consumption of embedded software based on statically predictable hardware events. The tool utilises techniques usually used for worst-case execution time (WCET) analysis together with bespoke energy models developed for two predictable architectures - the ARM Cortex-M0 and the Gaisler LEON3 - to perform energy usage analysis. EnergyAnalyzer has been applied in various use cases, such as selecting candidates for an optimised convolutional neural network, analysing the energy consumption of a camera pill prototype, and analysing the energy consumption of satellite communications software. The tool was developed as part of a larger project called TeamPlay, which aimed to provide a toolchain for developing embedded applications where energy properties are first-class citizens, allowing the developer to reflect directly on these properties at the source code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of benchmarks for the two target architectures and the results show that the statically estimated energy consumption has, with a few exceptions, less than 1% difference compared to the underlying empirical energy models which have been validated on real hardware.

Cite as

Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder. EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications. In 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023). Open Access Series in Informatics (OASIcs), Volume 114, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wegener_et_al:OASIcs.WCET.2023.9,
  author =	{Wegener, Simon and Nikov, Kris K. and Nunez-Yanez, Jose and Eder, Kerstin},
  title =	{{EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications}},
  booktitle =	{21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)},
  pages =	{9:1--9:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-293-8},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{114},
  editor =	{W\"{a}gemann, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9},
  URN =		{urn:nbn:de:0030-drops-184380},
  doi =		{10.4230/OASIcs.WCET.2023.9},
  annote =	{Keywords: Energy Modelling, Static Analysis, Gaisler LEON3, ARM Cortex-M0}
}
Document
Quasi Isolation QoS Setups to Control MPSoC Contention in Integrated Software Architectures

Authors: Sergio Garcia-Esteban, Alejandro Serrano-Cases, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The use of integrated architectures, such as integrated modular avionics (IMA) in avionics, IMA-SP in space, and AUTOSAR in automotive, running on Multi-Processor System-on-Chip (MPSoC) is on the rise. Timing isolation among the different software partitions or applications thereof in an integrated architecture is key to simplifying software integration and its timing validation by ensuring the performance of each partition has no or very limited impact on others despite they share MPSoC’s hardware resources. In this work, we contend that the increasing hardware support for Quality of Service (QoS) guarantees in modern MPSoCs can be leveraged via specific setups to provide strong, albeit not full, isolation among different software partitions. We introduce the concept of Quasi Isolation QoS (QIQoS) setups and instantiate it in the Xilinx Zynq UltraScale+. To that end, out of the millions of setups offered by the different QoS mechanisms, we identify specific QoS configurations that isolate the traffic of time-critical software partitions executing in the core cluster from that generated by contender partitions in the programmable logic. Our results show that the selected isolation setup results in performance variations of the partitions run in the computing cores that are below 6 percentage points, even under scenarios with extremely high traffic coming from the programmable logic.

Cite as

Sergio Garcia-Esteban, Alejandro Serrano-Cases, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla. Quasi Isolation QoS Setups to Control MPSoC Contention in Integrated Software Architectures. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{garciaesteban_et_al:LIPIcs.ECRTS.2023.5,
  author =	{Garcia-Esteban, Sergio and Serrano-Cases, Alejandro and Abella, Jaume and Mezzetti, Enrico and Cazorla, Francisco J.},
  title =	{{Quasi Isolation QoS Setups to Control MPSoC Contention in Integrated Software Architectures}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.5},
  URN =		{urn:nbn:de:0030-drops-180346},
  doi =		{10.4230/LIPIcs.ECRTS.2023.5},
  annote =	{Keywords: Multicore, Interference, QoS}
}
Document
Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC

Authors: Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
The interference co-running tasks generate on each other’s timing behavior continues to be one of the main challenges to be addressed before Multi-Processor System-on-Chip (MPSoCs) are fully embraced in critical systems like those deployed in avionics and automotive domains. Modern MPSoCs like the Xilinx Zynq UltraScale+ incorporate hardware Quality of Service (QoS) mechanisms that can help controlling contention among tasks. Given the distributed nature of modern MPSoCs, the route a request follows from its source (usually a compute element like a CPU) to its target (usually a memory) crosses several QoS points, each one potentially implementing a different QoS mechanism. Mastering QoS mechanisms individually, as well as their combined operation, is pivotal to obtain the expected benefits from the QoS support. In this work, we perform, to our knowledge, the first qualitative and quantitative analysis of the distributed QoS mechanisms in the Xilinx UltraScale+ MPSoC. We empirically derive QoS information not covered by the technical documentation, and show limitations and benefits of the available QoS support. To that end, we use a case study building on neural network kernels commonly used in autonomous systems in different real-time domains.

Cite as

Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J. Cazorla. Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 3:1-3:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{serranocases_et_al:LIPIcs.ECRTS.2021.3,
  author =	{Serrano-Cases, Alejandro and Reina, Juan M. and Abella, Jaume and Mezzetti, Enrico and Cazorla, Francisco J.},
  title =	{{Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+ MPSoC}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{3:1--3:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.3},
  URN =		{urn:nbn:de:0030-drops-139340},
  doi =		{10.4230/LIPIcs.ECRTS.2021.3},
  annote =	{Keywords: Quality of Service, Real-Time Systems, MPSoC, Multicore Contention}
}
Document
Normalisation for Dynamic Pattern Calculi

Authors: Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Rios

Published in: LIPIcs, Volume 15, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) (2012)


Abstract
The Pure Pattern Calculus (PPC) extends the lambda-calculus, as well as the family of algebraic pattern calculi, with first-class patterns; that is, patterns can be passed as arguments, evaluated and returned as results. The notion of matching failure of the PPC not only provides a mechanism to define functions by pattern matching on cases but also supplies PPC with parallel-or-like, non-sequential behaviour. Therefore, devising normalising strategies for PPC to obtain well-behaved implementations turns out to be challenging. This paper focuses on normalising reduction strategies for PPC. We define a (multistep) strategy and show that it is normalising. The strategy generalises the leftmost-outermost strategy for lambda-calculus and is strictly finer than parallel-outermost. The normalisation proof is based on the notion of necessary set of redexes, a generalisation of the notion of needed redex encompassing non-sequential reduction systems.

Cite as

Eduardo Bonelli, Delia Kesner, Carlos Lombardi, and Alejandro Rios. Normalisation for Dynamic Pattern Calculi. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 15, pp. 117-132, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{bonelli_et_al:LIPIcs.RTA.2012.117,
  author =	{Bonelli, Eduardo and Kesner, Delia and Lombardi, Carlos and Rios, Alejandro},
  title =	{{Normalisation for Dynamic Pattern Calculi}},
  booktitle =	{23rd International Conference on Rewriting Techniques and Applications (RTA'12)},
  pages =	{117--132},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-38-5},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{15},
  editor =	{Tiwari, Ashish},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2012.117},
  URN =		{urn:nbn:de:0030-drops-34889},
  doi =		{10.4230/LIPIcs.RTA.2012.117},
  annote =	{Keywords: Pattern calculi, reduction strategies, sequentiality, neededness}
}
Document
09171 Executive Summary – Adaptive, Output Sensitive, Online and Parameterized Algorithms

Authors: Jérémy Barbay, Rolf Klein, Alejandro López-Ortiz, and Rolf Niedermeier

Published in: Dagstuhl Seminar Proceedings, Volume 9171, Adaptive, Output Sensitive, Online and Parameterized Algorithms (2009)


Abstract
Traditionally the analysis of algorithms measures the complexity of a problem or algorithm in terms of the worst-case behavior over all inputs of a given size. However, in certain cases an improved algorithm can be obtained by considering a finer partition of the input space. As this idea has been independently rediscovered in many areas, the workshop gathered participants from different fields in order to explore the impact and the limits of this technique, in the hope to spring new collaboration and to seed the unification of the technique.

Cite as

Jérémy Barbay, Rolf Klein, Alejandro López-Ortiz, and Rolf Niedermeier. 09171 Executive Summary – Adaptive, Output Sensitive, Online and Parameterized Algorithms. In Adaptive, Output Sensitive, Online and Parameterized Algorithms. Dagstuhl Seminar Proceedings, Volume 9171, p. 1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{barbay_et_al:DagSemProc.09171.2,
  author =	{Barbay, J\'{e}r\'{e}my and Klein, Rolf and L\'{o}pez-Ortiz, Alejandro and Niedermeier, Rolf},
  title =	{{09171 Executive Summary – Adaptive, Output Sensitive, Online and Parameterized Algorithms}},
  booktitle =	{Adaptive, Output Sensitive, Online and Parameterized Algorithms},
  pages =	{1--1},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9171},
  editor =	{J\'{e}r\'{e}my Barbay and Rolf Klein and Alejandro Ortiz-L\'{o}pez and Rolf Niedermeier},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09171.2},
  URN =		{urn:nbn:de:0030-drops-21207},
  doi =		{10.4230/DagSemProc.09171.2},
  annote =	{Keywords: Adaptive analysis, instance optimal algorithms, fixed parameter tractable, output sensitive algorithms}
}
Document
Parameterized Analysis of Online Steiner Tree Problems

Authors: Spyros Angelopoulos

Published in: Dagstuhl Seminar Proceedings, Volume 9171, Adaptive, Output Sensitive, Online and Parameterized Algorithms (2009)


Abstract
Steiner tree problems occupy a central place in both areas of approximation and on-line algorithms. Many variants have been studied from the point of view of competitive analysis, and for several of these variants tight bounds are known. However, in several cases, worst-case analysis is overly pessimistic, which fails to explain the relative performance of algorithms. We show how adaptive analysis can help resolve this problem. As case studies, we consider the Steiner tree problem in directed graphs, and the Priority Steiner tree problem.

Cite as

Spyros Angelopoulos. Parameterized Analysis of Online Steiner Tree Problems. In Adaptive, Output Sensitive, Online and Parameterized Algorithms. Dagstuhl Seminar Proceedings, Volume 9171, pp. 1-11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{angelopoulos:DagSemProc.09171.3,
  author =	{Angelopoulos, Spyros},
  title =	{{Parameterized Analysis of Online Steiner Tree Problems}},
  booktitle =	{Adaptive, Output Sensitive, Online and Parameterized Algorithms},
  pages =	{1--11},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9171},
  editor =	{J\'{e}r\'{e}my Barbay and Rolf Klein and Alejandro Ortiz-L\'{o}pez and Rolf Niedermeier},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09171.3},
  URN =		{urn:nbn:de:0030-drops-21210},
  doi =		{10.4230/DagSemProc.09171.3},
  annote =	{Keywords: Online algorithms, Steiner tree problems, adaptive and parameteried analysis}
}
Document
Adaptive Analysis of On-line Algorithms

Authors: Reza Dorrigiv and Alejandro Lopez-Ortiz

Published in: Dagstuhl Seminar Proceedings, Volume 6421, Robot Navigation (2007)


Abstract
On-line algorithms are usually analyzed using competitive analysis, in which the performance of on-line algorithm on a sequence is normalized by the performance of the optimal on-line algorithm on that sequence. In this paper we introduce adaptive/cooperative analysis as an alternative general framework for the analysis of on-line algorithms. This model gives promising results when applied to two well known on-line problems, paging and list update. The idea is to normalize the performance of an on-line algorithm by a measure other than the performance of the on-line optimal algorithm OPT. We show that in many instances the perform of OPT on a sequence is a coarse approximation of the difficulty or complexity of a given input. Using a finer, more natural measure we can separate paging and list update algorithms which were otherwise undistinguishable under the classical model. This createas a performance hierarchy of algorithms which better reflects the intuitive relative strengths between them. Lastly, we show that, surprisingly, certain randomized algorithms which are superior to MTF in the classical model are not so in the adaptive case. This confirms that the ability of the on-line adaptive algorithm to ignore pathological worst cases can lead to algorithms that are more efficient in practice.

Cite as

Reza Dorrigiv and Alejandro Lopez-Ortiz. Adaptive Analysis of On-line Algorithms. In Robot Navigation. Dagstuhl Seminar Proceedings, Volume 6421, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{dorrigiv_et_al:DagSemProc.06421.4,
  author =	{Dorrigiv, Reza and Lopez-Ortiz, Alejandro},
  title =	{{Adaptive Analysis of On-line Algorithms}},
  booktitle =	{Robot Navigation},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6421},
  editor =	{S\'{a}ndor Fekete and Rudolf Fleischer and Rolf Klein and Alejandro Lopez-Ortiz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06421.4},
  URN =		{urn:nbn:de:0030-drops-8696},
  doi =		{10.4230/DagSemProc.06421.4},
  annote =	{Keywords: On-line algorithms, paging, adaptive/cooperative analysis}
}
  • Refine by Author
  • 2 Abella, Jaume
  • 2 Cazorla, Francisco J.
  • 2 Mancuso, Renato
  • 2 Mezzetti, Enrico
  • 2 Serrano-Cases, Alejandro
  • Show More...

  • Refine by Classification
  • 4 Computer systems organization → Real-time system architecture
  • 1 Computer systems organization → Real-time systems
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Temporal reasoning
  • 1 Information systems → Data streams
  • Show More...

  • Refine by Keyword
  • 2 Real-Time Systems
  • 1 ARM Cortex-M0
  • 1 Adaptive analysis
  • 1 Bandwidth Regulation
  • 1 Böhm trees
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 6 2024
  • 2 2009
  • 2 2023
  • 1 2007
  • 1 2012
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail