7 Search Results for "Vicary, Jamie"


Document
Machine-Checked Categorical Diagrammatic Reasoning

Authors: Benoît Guillemet, Assia Mahboubi, and Matthieu Piquerez

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper describes a formal proof library, developed using the Coq proof assistant, designed to assist users in writing correct diagrammatic proofs, for 1-categories. This library proposes a deep-embedded, domain-specific formal language, which features dedicated proof commands to automate the synthesis, and the verification, of the technical parts often eluded in the literature.

Cite as

Benoît Guillemet, Assia Mahboubi, and Matthieu Piquerez. Machine-Checked Categorical Diagrammatic Reasoning. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guillemet_et_al:LIPIcs.FSCD.2024.7,
  author =	{Guillemet, Beno\^{i}t and Mahboubi, Assia and Piquerez, Matthieu},
  title =	{{Machine-Checked Categorical Diagrammatic Reasoning}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.7},
  URN =		{urn:nbn:de:0030-drops-203363},
  doi =		{10.4230/LIPIcs.FSCD.2024.7},
  annote =	{Keywords: Interactive theorem proving, categories, diagrams, formal proof automation}
}
Document
Automating Boundary Filling in Cubical Agda

Authors: Maximilian Doré, Evan Cavallo, and Anders Mörtberg

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
When working in a proof assistant, automation is key to discharging routine proof goals such as equations between algebraic expressions. Homotopy Type Theory allows the user to reason about higher structures, such as topological spaces, using higher inductive types (HITs) and univalence. Cubical Agda is an extension of Agda with computational support for HITs and univalence. A difficulty when working in Cubical Agda is dealing with the complex combinatorics of higher structures, an infinite-dimensional generalisation of equational reasoning. To solve these higher-dimensional equations consists in constructing cubes with specified boundaries. We develop a simplified cubical language in which we isolate and study two automation problems: contortion solving, where we attempt to "contort" a cube to fit a given boundary, and the more general Kan solving, where we search for solutions that involve pasting multiple cubes together. Both problems are difficult in the general case - Kan solving is even undecidable - so we focus on heuristics that perform well on practical examples. We provide a solver for the contortion problem using a reformulation of contortions in terms of poset maps, while we solve Kan problems using constraint satisfaction programming. We have implemented our algorithms in an experimental Haskell solver that can be used to automatically solve goals presented by Cubical Agda. We illustrate this with a case study establishing the Eckmann-Hilton theorem using our solver, as well as various benchmarks - providing the ground for further study of proof automation in cubical type theories.

Cite as

Maximilian Doré, Evan Cavallo, and Anders Mörtberg. Automating Boundary Filling in Cubical Agda. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dore_et_al:LIPIcs.FSCD.2024.22,
  author =	{Dor\'{e}, Maximilian and Cavallo, Evan and M\"{o}rtberg, Anders},
  title =	{{Automating Boundary Filling in Cubical Agda}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.22},
  URN =		{urn:nbn:de:0030-drops-203514},
  doi =		{10.4230/LIPIcs.FSCD.2024.22},
  annote =	{Keywords: Cubical Agda, Automated Reasoning, Constraint Satisfaction Programming}
}
Document
homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Authors: Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation of proof objects via a graphical representation. We describe the user interface and explain how the tool can be used in practice. We also describe the essential subsystems of the tool, including collapse, contraction, expansion, typechecking, and layout, as well as key implementation details including data structure encoding, memoisation, and rendering. These technical innovations have been essential for achieving good performance in a resource-constrained setting.

Cite as

Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 30:1-30:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{corbyn_et_al:LIPIcs.FSCD.2024.30,
  author =	{Corbyn, Nathan and Heidemann, Lukas and Hu, Nick and Sarti, Chiara and Tataru, Calin and Vicary, Jamie},
  title =	{{homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.30},
  URN =		{urn:nbn:de:0030-drops-203594},
  doi =		{10.4230/LIPIcs.FSCD.2024.30},
  annote =	{Keywords: Higher category theory, proof assistant, string diagrams}
}
Document
Sheaf Semantics of Termination-Insensitive Noninterference

Authors: Jonathan Sterling and Robert Harper

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
We propose a new sheaf semantics for secure information flow over a space of abstract behaviors, based on synthetic domain theory: security classes are open/closed partitions, types are sheaves, and redaction of sensitive information corresponds to restricting a sheaf to a closed subspace. Our security-aware computational model satisfies termination-insensitive noninterference automatically, and therefore constitutes an intrinsic alternative to state of the art extrinsic/relational models of noninterference. Our semantics is the latest application of Sterling and Harper’s recent re-interpretation of phase distinctions and noninterference in programming languages in terms of Artin gluing and topos-theoretic open/closed modalities. Prior applications include parametricity for ML modules, the proof of normalization for cubical type theory by Sterling and Angiuli, and the cost-aware logical framework of Niu et al. In this paper we employ the phase distinction perspective twice: first to reconstruct the syntax and semantics of secure information flow as a lattice of phase distinctions between "higher" and "lower" security, and second to verify the computational adequacy of our sheaf semantics with respect to a version of Abadi et al.’s dependency core calculus to which we have added a construct for declassifying termination channels.

Cite as

Jonathan Sterling and Robert Harper. Sheaf Semantics of Termination-Insensitive Noninterference. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2022.5,
  author =	{Sterling, Jonathan and Harper, Robert},
  title =	{{Sheaf Semantics of Termination-Insensitive Noninterference}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.5},
  URN =		{urn:nbn:de:0030-drops-162869},
  doi =		{10.4230/LIPIcs.FSCD.2022.5},
  annote =	{Keywords: information flow, noninterference, denotational semantics, phase distinction, Artin gluing, modal type theory, topos theory, synthetic domain theory, synthetic Tait computability}
}
Document
A Classical Groupoid Model for Quantum Networks

Authors: David Reutter and Jamie Vicary

Published in: LIPIcs, Volume 72, 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)


Abstract
We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution.

Cite as

David Reutter and Jamie Vicary. A Classical Groupoid Model for Quantum Networks. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{reutter_et_al:LIPIcs.CALCO.2017.19,
  author =	{Reutter, David and Vicary, Jamie},
  title =	{{A Classical Groupoid Model for Quantum Networks}},
  booktitle =	{7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-033-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{72},
  editor =	{Bonchi, Filippo and K\"{o}nig, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2017.19},
  URN =		{urn:nbn:de:0030-drops-80391},
  doi =		{10.4230/LIPIcs.CALCO.2017.19},
  annote =	{Keywords: groupoids, networks, quantum, semantics, key distribution}
}
Document
A 2-Categorical Approach to Composing Quantum Structures

Authors: David Reutter and Jamie Vicary

Published in: LIPIcs, Volume 72, 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)


Abstract
We present an infinite number of construction schemes for quantum structures, including unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on the type structure of biunitary connections, 2-categorical structures which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method.

Cite as

David Reutter and Jamie Vicary. A 2-Categorical Approach to Composing Quantum Structures. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{reutter_et_al:LIPIcs.CALCO.2017.20,
  author =	{Reutter, David and Vicary, Jamie},
  title =	{{A 2-Categorical Approach to Composing Quantum Structures}},
  booktitle =	{7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-033-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{72},
  editor =	{Bonchi, Filippo and K\"{o}nig, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2017.20},
  URN =		{urn:nbn:de:0030-drops-80389},
  doi =		{10.4230/LIPIcs.CALCO.2017.20},
  annote =	{Keywords: quantum constructions, 2-category, graphical calculus, planar algebra}
}
Document
Globular: An Online Proof Assistant for Higher-Dimensional Rewriting

Authors: Krzysztof Bar, Aleks Kissinger, and Jamie Vicary

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
This article introduces Globular, an online proof assistant for the formalization and verification of proofs in higher-dimensional category theory. The tool produces graphical visualizations of higher-dimensional proofs, assists in their construction with a point-and-click interface, and performs type checking to prevent incorrect rewrites. Hosted on the web, it has a low barrier to use, and allows hyperlinking of formalized proofs directly from research papers. It allows the formalization of proofs from logic, topology and algebra which are not formalizable by other methods, and we give several examples.

Cite as

Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: An Online Proof Assistant for Higher-Dimensional Rewriting. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bar_et_al:LIPIcs.FSCD.2016.34,
  author =	{Bar, Krzysztof and Kissinger, Aleks and Vicary, Jamie},
  title =	{{Globular: An Online Proof Assistant for Higher-Dimensional Rewriting}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.34},
  URN =		{urn:nbn:de:0030-drops-59880},
  doi =		{10.4230/LIPIcs.FSCD.2016.34},
  annote =	{Keywords: higher category theory, higher-dimensional rewriting, interactive theorem proving}
}
  • Refine by Author
  • 4 Vicary, Jamie
  • 2 Reutter, David
  • 1 Bar, Krzysztof
  • 1 Cavallo, Evan
  • 1 Corbyn, Nathan
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Type theory
  • 1 Computing methodologies → Theorem proving algorithms
  • 1 Security and privacy → Formal methods and theory of security
  • 1 Software and its engineering → Software notations and tools
  • Show More...

  • Refine by Keyword
  • 1 2-category
  • 1 Artin gluing
  • 1 Automated Reasoning
  • 1 Constraint Satisfaction Programming
  • 1 Cubical Agda
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 2 2017
  • 1 2016
  • 1 2022