13 Search Results for "Wild, Paul"


Document
Fringe Trees for Random Trees with Given Vertex Degrees

Authors: Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees with given vertex degrees, asymptotically follows a normal distribution. As an application, we establish the same asymptotic normality for random simply generated trees (conditioned Galton-Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the multivariate setting.

Cite as

Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe Trees for Random Trees with Given Vertex Degrees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berzunzaojeda_et_al:LIPIcs.AofA.2024.1,
  author =	{Berzunza Ojeda, Gabriel and Holmgren, Cecilia and Janson, Svante},
  title =	{{Fringe Trees for Random Trees with Given Vertex Degrees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.1},
  URN =		{urn:nbn:de:0030-drops-204369},
  doi =		{10.4230/LIPIcs.AofA.2024.1},
  annote =	{Keywords: Conditioned Galton-Watson trees, fringe trees, simply generated trees, uniformly random trees with given vertex degrees}
}
Document
Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models

Authors: Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
Composition schemes are ubiquitous in combinatorics, statistical mechanics and probability theory. We give a unifying explanation to various phenomena observed in the combinatorial and statistical physics literature in the context of q-enumeration (this is a model where objects with a parameter of value k have a Gibbs measure/Boltzmann weight q^k). For structures enumerated by a composition scheme, we prove a phase transition for any parameter having such a Gibbs measure: for a critical value q = q_c, the limit law of the parameter is a two-parameter Mittag-Leffler distribution, while it is Gaussian in the supercritical regime (q > q_c), and it is a Boltzmann distribution in the subcritical regime (0 < q < q_c). We apply our results to fundamental statistics of lattice paths and quarter-plane walks. We also explain previously observed limit laws for pattern-restricted permutations, and a phenomenon uncovered by Krattenthaler for the wall contacts in watermelons.

Cite as

Cyril Banderier, Markus Kuba, Stephan Wagner, and Michael Wallner. Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{banderier_et_al:LIPIcs.AofA.2024.7,
  author =	{Banderier, Cyril and Kuba, Markus and Wagner, Stephan and Wallner, Michael},
  title =	{{Composition Schemes: q-Enumerations and Phase Transitions in Gibbs Models}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.7},
  URN =		{urn:nbn:de:0030-drops-204427},
  doi =		{10.4230/LIPIcs.AofA.2024.7},
  annote =	{Keywords: Composition schemes, q-enumeration, generating functions, Gibbs distribution, phase transitions, limit laws, Mittag-Leffler distribution, chi distribution, Boltzmann distribution}
}
Document
Matching Algorithms in the Sparse Stochastic Block Model

Authors: Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In sparse Erdős-Rényi graphs, it is known that a linear-time algorithm of Karp and Sipser achieves near-optimal matching sizes asymptotically almost surely, giving a law-of-large numbers for the matching numbers of such graphs in terms of solutions to an ODE [Jonathan Aronson et al., 1998]. We provide an extension of this analysis, identifying broad ranges of stochastic block model parameters for which the Karp-Sipser algorithm achieves near-optimal matching sizes, but demonstrating that it cannot perform optimally on general stochastic block model instances. We also consider the problem of constructing a matching online, in which the vertices of one half of a bipartite stochastic block model arrive one-at-a-time, and must be matched as they arrive. We show that, when the expected degrees in all communities are equal, the competitive ratio lower bound of 0.837 found by Mastin and Jaillet for the Erdős-Rényi case [Andrew Mastin and Patrick Jaillet, 2013] is achieved by a simple greedy algorithm, and this competitive ratio is optimal. We then propose and analyze a linear-time online matching algorithm with better performance in general stochastic block models.

Cite as

Anna Brandenberger, Byron Chin, Nathan S. Sheffield, and Divya Shyamal. Matching Algorithms in the Sparse Stochastic Block Model. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{brandenberger_et_al:LIPIcs.AofA.2024.16,
  author =	{Brandenberger, Anna and Chin, Byron and Sheffield, Nathan S. and Shyamal, Divya},
  title =	{{Matching Algorithms in the Sparse Stochastic Block Model}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.16},
  URN =		{urn:nbn:de:0030-drops-204515},
  doi =		{10.4230/LIPIcs.AofA.2024.16},
  annote =	{Keywords: Matching Algorithms, Online Matching, Stochastic Block Model}
}
Document
The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Authors: Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is celebrated that a simple random walk on ℤ and ℤ² returns to the initial vertex v infinitely many times during infinitely many transitions, which is said recurrent, while it returns to v only finite times on ℤ^d for d ≥ 3, which is said transient. It is also known that a simple random walk on a growing region on ℤ^d can be recurrent depending on growing speed for any fixed d. This paper shows that a simple random walk on {0,1,…,N}ⁿ with an increasing n and a fixed N can be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific model of a random walk on a growing graph (RWoGG) and show a phase transition between the recurrence and transience of the random walk regarding the growth speed of the graph. For the proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as graph growing (weakly LHaGG).

Cite as

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumamoto_et_al:LIPIcs.AofA.2024.22,
  author =	{Kumamoto, Shuma and Kijima, Shuji and Shirai, Tomoyuki},
  title =	{{The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.22},
  URN =		{urn:nbn:de:0030-drops-204577},
  doi =		{10.4230/LIPIcs.AofA.2024.22},
  annote =	{Keywords: Random walk, dynamic graph, recurrence, transience, coupling}
}
Document
Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences

Authors: Clemens Heuberger, Daniel Krenn, and Tobias Lechner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
In the asymptotic analysis of regular sequences as defined by Allouche and Shallit, it is usually advisable to study their summatory function because the original sequence has a too fluctuating behaviour. It might be that the process of taking the summatory function has to be repeated if the sequence is fluctuating too much. In this paper we show that for all regular sequences except for some degenerate cases, repeating this process finitely many times leads to a "nice" asymptotic expansion containing periodic fluctuations whose Fourier coefficients can be computed using the results on the asymptotics of the summatory function of regular sequences by the first two authors of this paper. In a recent paper, Hwang, Janson, and Tsai perform a thorough investigation of divide-and-conquer recurrences. These can be seen as 2-regular sequences. By considering them as the summatory function of their forward difference, the results on the asymptotics of the summatory function of regular sequences become applicable. We thoroughly investigate the case of a polynomial toll function.

Cite as

Clemens Heuberger, Daniel Krenn, and Tobias Lechner. Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 24:1-24:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{heuberger_et_al:LIPIcs.AofA.2024.24,
  author =	{Heuberger, Clemens and Krenn, Daniel and Lechner, Tobias},
  title =	{{Analysis of Regular Sequences: Summatory Functions and Divide-And-Conquer Recurrences}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{24:1--24:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.24},
  URN =		{urn:nbn:de:0030-drops-204597},
  doi =		{10.4230/LIPIcs.AofA.2024.24},
  annote =	{Keywords: Regular sequence, Divide-and-Conquer Recurrence, Summatory Function, Asymptotic Analysis}
}
Document
Track A: Algorithms, Complexity and Games
Tight Bounds on Adjacency Labels for Monotone Graph Classes

Authors: Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim Zhukovskii

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A class of graphs admits an adjacency labeling scheme of size b(n), if the vertices in each of its n-vertex graphs can be assigned binary strings (called labels) of length b(n) so that the adjacency of two vertices can be determined solely from their labels. We give bounds on the size of adjacency labels for every family of monotone (i.e., subgraph-closed) classes with a "well-behaved" growth function between 2^Ω(n log n) and 2^O(n^{2-δ}) for any δ > 0. Specifically, we show that for any function f: ℕ → ℝ satisfying log n ⩽ f(n) ⩽ n^{1-δ} for any fixed δ > 0, and some sub-multiplicativity condition, there are monotone graph classes with growth 2^O(nf(n)) that do not admit adjacency labels of size at most f(n) log n. On the other hand, any such class does admit adjacency labels of size O(f(n)log n). Surprisingly this bound is a Θ(log n) factor away from the information-theoretic bound of Ω(f(n)). Our bounds are tight upto constant factors, and the special case when f = log implies that the recently-refuted Implicit Graph Conjecture [Hatami and Hatami, FOCS 2022] also fails within monotone classes. We further show that the Implicit Graph Conjecture holds for all monotone small classes. In other words, any monotone class with growth rate at most n! cⁿ for some constant c > 0, admits adjacency labels of information-theoretic order optimal size. In fact, we show a more general result that is of independent interest: any monotone small class of graphs has bounded degeneracy. We conjecture that the Implicit Graph Conjecture holds for all hereditary small classes.

Cite as

Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim Zhukovskii. Tight Bounds on Adjacency Labels for Monotone Graph Classes. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2024.31,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Sylvester, John and Zamaraev, Viktor and Zhukovskii, Maksim},
  title =	{{Tight Bounds on Adjacency Labels for Monotone Graph Classes}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.31},
  URN =		{urn:nbn:de:0030-drops-201741},
  doi =		{10.4230/LIPIcs.ICALP.2024.31},
  annote =	{Keywords: Adjacency labeling, degeneracy, monotone classes, small classes, factorial classes, implicit graph conjecture}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We address the task of deriving fixpoint equations from modal logics characterizing behavioural equivalences and metrics (summarized under the term conformances). We rely on an earlier work that obtains Hennessy-Milner theorems as corollaries to a fixpoint preservation property along Galois connections between suitable lattices. We instantiate this to the setting of coalgebras, in which we spell out the compatibility property ensuring that we can derive a behaviour function whose greatest fixpoint coincides with the logical conformance. We then concentrate on the linear-time case, for which we study coalgebras based on the machine functor living in Eilenberg-Moore categories, a scenario for which we obtain a particularly simple logic and fixpoint equation. The theory is instantiated to concrete examples, both in the branching-time case (bisimilarity and behavioural metrics) and in the linear-time case (trace equivalences and trace distances).

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, Karla Messing, Jonas Forster, Lutz Schröder, and Paul Wild. Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 10:1-10:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.STACS.2024.10,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla and Forster, Jonas and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Expressive Quantale-Valued Logics for Coalgebras: An Adjunction-Based Approach}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{10:1--10:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.10},
  URN =		{urn:nbn:de:0030-drops-197203},
  doi =		{10.4230/LIPIcs.STACS.2024.10},
  annote =	{Keywords: modal logics, coalgebras, behavioural equivalences, behavioural metrics, linear-time semantics, Eilenberg-Moore categories}
}
Document
Hennessy-Milner Theorems via Galois Connections

Authors: Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
We introduce a general and compositional, yet simple, framework that allows to derive soundness and expressiveness results for modal logics characterizing behavioural equivalences or metrics (also known as Hennessy-Milner theorems). It is based on Galois connections between sets of (real-valued) predicates on the one hand and equivalence relations/metrics on the other hand and covers a part of the linear-time-branching-time spectrum, both for the qualitative case (behavioural equivalences) and the quantitative case (behavioural metrics). We derive behaviour functions from a given logic and give a condition, called compatibility, that characterizes under which conditions a logically induced equivalence/metric is induced by a fixpoint equation. In particular, this framework allows to derive a new fixpoint characterization of directed trace metrics.

Cite as

Harsh Beohar, Sebastian Gurke, Barbara König, and Karla Messing. Hennessy-Milner Theorems via Galois Connections. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{beohar_et_al:LIPIcs.CSL.2023.12,
  author =	{Beohar, Harsh and Gurke, Sebastian and K\"{o}nig, Barbara and Messing, Karla},
  title =	{{Hennessy-Milner Theorems via Galois Connections}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.12},
  URN =		{urn:nbn:de:0030-drops-174735},
  doi =		{10.4230/LIPIcs.CSL.2023.12},
  annote =	{Keywords: behavioural equivalences and metrics, modal logics, Galois connections}
}
Document
Quantitative Hennessy-Milner Theorems via Notions of Density

Authors: Jonas Forster, Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
The classical Hennessy-Milner theorem is an important tool in the analysis of concurrent processes; it guarantees that any two non-bisimilar states in finitely branching labelled transition systems can be distinguished by a modal formula. Numerous variants of this theorem have since been established for a wide range of logics and system types, including quantitative versions where lower bounds on behavioural distance (e.g. in weighted, metric, or probabilistic transition systems) are witnessed by quantitative modal formulas. Both the qualitative and the quantitative versions have been accommodated within the framework of coalgebraic logic, with distances taking values in quantales, subject to certain restrictions, such as being so-called value quantales. While previous quantitative coalgebraic Hennessy-Milner theorems apply only to liftings of set functors to (pseudo)metric spaces, in the present work we provide a quantitative coalgebraic Hennessy-Milner theorem that applies more widely to functors native to metric spaces; notably, we thus cover, for the first time, the well-known Hennessy-Milner theorem for continuous probabilistic transition systems, where transitions are given by Borel measures on metric spaces, as an instance of such a general result. In the process, we also relax the restrictions imposed on the quantale, and additionally parametrize the technical account over notions of closure and, hence, density, providing associated variants of the Stone-Weierstraß theorem; this allows us to cover, for instance, behavioural ultrametrics.

Cite as

Jonas Forster, Sergey Goncharov, Dirk Hofmann, Pedro Nora, Lutz Schröder, and Paul Wild. Quantitative Hennessy-Milner Theorems via Notions of Density. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 22:1-22:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.CSL.2023.22,
  author =	{Forster, Jonas and Goncharov, Sergey and Hofmann, Dirk and Nora, Pedro and Schr\"{o}der, Lutz and Wild, Paul},
  title =	{{Quantitative Hennessy-Milner Theorems via Notions of Density}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{22:1--22:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.22},
  URN =		{urn:nbn:de:0030-drops-174836},
  doi =		{10.4230/LIPIcs.CSL.2023.22},
  annote =	{Keywords: Behavioural distances, coalgebra, characteristic modal logics, density, Hennessy-Milner theorems, quantale-enriched categories, Stone-Weierstra{\ss} theorems}
}
Document
Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions

Authors: Paul Wild and Lutz Schröder

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Behavioural distances provide a fine-grained measure of equivalence in systems involving quantitative data, such as probabilistic, fuzzy, or metric systems. Like in the classical setting of crisp bisimulation-type equivalences, the wide variation found in system types creates a need for generic methods that apply to many system types at once. Approaches of this kind are emerging within the paradigm of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An immediate benefit of the latter is that they allow bounding behavioural distance by means of fuzzy bisimulations that need not themselves be (pseudo-)metrics, in analogy to classical bisimulations (which need not be equivalence relations). The known instances of generic pseudometric liftings, specifically the generic Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions, using the fact that both are effectively given by a choice of quantitative modalities. Our central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a suitable set of quantitative modalities, the so-called Moss modalities. For non-expansive fuzzy lax extensions, this allows for the extraction of quantitative modal logics that characterize behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem; equivalently, we obtain expressiveness of a quantitative version of Moss' coalgebraic logic.

Cite as

Paul Wild and Lutz Schröder. Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 27:1-27:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{wild_et_al:LIPIcs.CONCUR.2020.27,
  author =	{Wild, Paul and Schr\"{o}der, Lutz},
  title =	{{Characteristic Logics for Behavioural Metrics via Fuzzy Lax Extensions}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{27:1--27:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.27},
  URN =		{urn:nbn:de:0030-drops-128394},
  doi =		{10.4230/LIPIcs.CONCUR.2020.27},
  annote =	{Keywords: Modal logic, behavioural distance, coalgebra, bisimulation, lax extension}
}
  • Refine by Author
  • 3 Schröder, Lutz
  • 3 Wild, Paul
  • 2 Beohar, Harsh
  • 2 Forster, Jonas
  • 2 Gurke, Sebastian
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Modal and temporal logics
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Concurrency
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Knowledge representation and reasoning
  • Show More...

  • Refine by Keyword
  • 2 coalgebra
  • 2 modal logics
  • 1 Adjacency labeling
  • 1 Asymptotic Analysis
  • 1 Behavioural Distances
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 10 2024
  • 2 2023
  • 1 2020