7 Search Results for "de Rezende, Susanna F."


Document
Proving Unsatisfiability with Hitting Formulas

Authors: Yuval Filmus, Edward A. Hirsch, Artur Riazanov, Alexander Smal, and Marc Vinyals

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
A hitting formula is a set of Boolean clauses such that any two of the clauses cannot be simultaneously falsified. Hitting formulas have been studied in many different contexts at least since [Iwama, 1989] and, based on experimental evidence, Peitl and Szeider [Tomás Peitl and Stefan Szeider, 2022] conjectured that unsatisfiable hitting formulas are among the hardest for resolution. Using the fact that hitting formulas are easy to check for satisfiability we make them the foundation of a new static proof system {{rmHitting}}: a refutation of a CNF in {{rmHitting}} is an unsatisfiable hitting formula such that each of its clauses is a weakening of a clause of the refuted CNF. Comparing this system to resolution and other proof systems is equivalent to studying the hardness of hitting formulas. Our first result is that {{rmHitting}} is quasi-polynomially simulated by tree-like resolution, which means that hitting formulas cannot be exponentially hard for resolution and partially refutes the conjecture of Peitl and Szeider. We show that tree-like resolution and {{rmHitting}} are quasi-polynomially separated, while for resolution, this question remains open. For a system that is only quasi-polynomially stronger than tree-like resolution, {{rmHitting}} is surprisingly difficult to polynomially simulate in another proof system. Using the ideas of Raz-Shpilka’s polynomial identity testing for noncommutative circuits [Raz and Shpilka, 2005] we show that {{rmHitting}} is p-simulated by {{rmExtended {{rmFrege}}}}, but we conjecture that much more efficient simulations exist. As a byproduct, we show that a number of static (semi)algebraic systems are verifiable in deterministic polynomial time. We consider multiple extensions of {{rmHitting}}, and in particular a proof system {{{rmHitting}}(⊕)} related to the {{{rmRes}}(⊕)} proof system for which no superpolynomial-size lower bounds are known. {{{rmHitting}}(⊕)} p-simulates the tree-like version of {{{rmRes}}(⊕)} and is at least quasi-polynomially stronger. We show that formulas expressing the non-existence of perfect matchings in the graphs K_{n,n+2} are exponentially hard for {{{rmHitting}}(⊕)} via a reduction to the partition bound for communication complexity. See the full version of the paper for the proofs. They are omitted in this Extended Abstract.

Cite as

Yuval Filmus, Edward A. Hirsch, Artur Riazanov, Alexander Smal, and Marc Vinyals. Proving Unsatisfiability with Hitting Formulas. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 48:1-48:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.ITCS.2024.48,
  author =	{Filmus, Yuval and Hirsch, Edward A. and Riazanov, Artur and Smal, Alexander and Vinyals, Marc},
  title =	{{Proving Unsatisfiability with Hitting Formulas}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{48:1--48:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.48},
  URN =		{urn:nbn:de:0030-drops-195762},
  doi =		{10.4230/LIPIcs.ITCS.2024.48},
  annote =	{Keywords: hitting formulas, polynomial identity testing, query complexity}
}
Document
Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds

Authors: Erfan Khaniki

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
A map g:{0,1}ⁿ → {0,1}^m (m > n) is a hard proof complexity generator for a proof system P iff for every string b ∈ {0,1}^m ⧵ Rng(g), formula τ_b(g) naturally expressing b ∉ Rng(g) requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan-Wigderson generator. Razborov [A. A. {Razborov}, 2015] conjectured that if A is a suitable matrix and f is a NP∩CoNP function hard-on-average for 𝖯/poly, then NW_{f, A} is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of Razborov’s conjecture for AC⁰-Frege. We show that for any symmetric NP∩CoNP function f that is exponentially hard for depth two AC⁰ circuits, NW_{f,A} is a hard proof complexity generator for AC⁰-Frege in a natural setting. As direct applications of this theorem, we show that: 1) For any f with the specified properties, τ_b(NW_{f,A}) (for a natural formalization) based on a random b and a random matrix A with probability 1-o(1) is a tautology and requires superpolynomial (or even exponential) AC⁰-Frege proofs. 2) Certain formalizations of the principle f_n ∉ (NP∩CoNP)/poly requires superpolynomial AC⁰-Frege proofs. These applications relate to two questions that were asked by Krajíček [J. {Krajíček}, 2019].

Cite as

Erfan Khaniki. Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{khaniki:LIPIcs.CCC.2022.17,
  author =	{Khaniki, Erfan},
  title =	{{Nisan-Wigderson Generators in Proof Complexity: New Lower Bounds}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.17},
  URN =		{urn:nbn:de:0030-drops-165799},
  doi =		{10.4230/LIPIcs.CCC.2022.17},
  annote =	{Keywords: Proof complexity, Bounded arithmetic, Bounded depth Frege, Nisan-Wigderson generators, Meta-complexity, Lower bounds}
}
Document
The Power of Negative Reasoning

Authors: Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Semialgebraic proof systems have been studied extensively in proof complexity since the late 1990s to understand the power of Gröbner basis computations, linear and semidefinite programming hierarchies, and other methods. Such proof systems are defined alternately with only the original variables of the problem and with special formal variables for positive and negative literals, but there seems to have been no study how these different definitions affect the power of the proof systems. We show for Nullstellensatz, polynomial calculus, Sherali-Adams, and sums-of-squares that adding formal variables for negative literals makes the proof systems exponentially stronger, with respect to the number of terms in the proofs. These separations are witnessed by CNF formulas that are easy for resolution, which establishes that polynomial calculus, Sherali-Adams, and sums-of-squares cannot efficiently simulate resolution without having access to variables for negative literals.

Cite as

Susanna F. de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The Power of Negative Reasoning. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 40:1-40:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2021.40,
  author =	{de Rezende, Susanna F. and Lauria, Massimo and Nordstr\"{o}m, Jakob and Sokolov, Dmitry},
  title =	{{The Power of Negative Reasoning}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{40:1--40:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.40},
  URN =		{urn:nbn:de:0030-drops-143140},
  doi =		{10.4230/LIPIcs.CCC.2021.40},
  annote =	{Keywords: Proof complexity, Polynomial calculus, Nullstellensatz, Sums-of-squares, Sherali-Adams}
}
Document
Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs

Authors: Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov

Published in: LIPIcs, Volume 169, 35th Computational Complexity Conference (CCC 2020)


Abstract
We show exponential lower bounds on resolution proof length for pigeonhole principle (PHP) formulas and perfect matching formulas over highly unbalanced, sparse expander graphs, thus answering the challenge to establish strong lower bounds in the regime between balanced constant-degree expanders as in [Ben-Sasson and Wigderson '01] and highly unbalanced, dense graphs as in [Raz '04] and [Razborov '03, '04]. We obtain our results by revisiting Razborov’s pseudo-width method for PHP formulas over dense graphs and extending it to sparse graphs. This further demonstrates the power of the pseudo-width method, and we believe it could potentially be useful for attacking also other longstanding open problems for resolution and other proof systems.

Cite as

Susanna F. de Rezende, Jakob Nordström, Kilian Risse, and Dmitry Sokolov. Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs. In 35th Computational Complexity Conference (CCC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 169, pp. 28:1-28:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2020.28,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Risse, Kilian and Sokolov, Dmitry},
  title =	{{Exponential Resolution Lower Bounds for Weak Pigeonhole Principle and Perfect Matching Formulas over Sparse Graphs}},
  booktitle =	{35th Computational Complexity Conference (CCC 2020)},
  pages =	{28:1--28:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-156-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{169},
  editor =	{Saraf, Shubhangi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2020.28},
  URN =		{urn:nbn:de:0030-drops-125804},
  doi =		{10.4230/LIPIcs.CCC.2020.28},
  annote =	{Keywords: proof complexity, resolution, weak pigeonhole principle, perfect matching, sparse graphs}
}
Document
Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

Authors: Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert Robere

Published in: LIPIcs, Volume 137, 34th Computational Complexity Conference (CCC 2019)


Abstract
We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system.

Cite as

Susanna F. de Rezende, Jakob Nordström, Or Meir, and Robert Robere. Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling. In 34th Computational Complexity Conference (CCC 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 137, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{derezende_et_al:LIPIcs.CCC.2019.18,
  author =	{de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Meir, Or and Robere, Robert},
  title =	{{Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling}},
  booktitle =	{34th Computational Complexity Conference (CCC 2019)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-116-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{137},
  editor =	{Shpilka, Amir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2019.18},
  URN =		{urn:nbn:de:0030-drops-108403},
  doi =		{10.4230/LIPIcs.CCC.2019.18},
  annote =	{Keywords: proof complexity, Nullstellensatz, pebble games, trade-offs, size, degree}
}
Document
Lifting Theorems for Equality

Authors: Bruno Loff and Sagnik Mukhopadhyay

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We show a deterministic simulation (or lifting) theorem for composed problems f o Eq_n where the inner function (the gadget) is Equality on n bits. When f is a total function on p bits, it is easy to show via a rank argument that the communication complexity of f o Eq_n is Omega(deg(f) * n). However, there is a surprising counter-example of a partial function f on p bits, such that any completion f' of f has deg(f') = Omega(p), and yet f o Eq_n has communication complexity O(n). Nonetheless, we are able to show that the communication complexity of f o Eq_n is at least D(f) * n for a complexity measure D(f) which is closely related to the AND-query complexity of f and is lower-bounded by the logarithm of the leaf complexity of f. As a corollary, we also obtain lifting theorems for the set-disjointness gadget, and a lifting theorem in the context of parity decision-trees, for the NOR gadget. As an application, we prove a tight lower-bound for the deterministic communication complexity of the communication problem, where Alice and Bob are each given p-many n-bit strings, with the promise that either all of the strings are distinct, or all-but-one of the strings are distinct, and they wish to know which is the case. We show that the complexity of this problem is Theta(p * n).

Cite as

Bruno Loff and Sagnik Mukhopadhyay. Lifting Theorems for Equality. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 50:1-50:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.STACS.2019.50,
  author =	{Loff, Bruno and Mukhopadhyay, Sagnik},
  title =	{{Lifting Theorems for Equality}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{50:1--50:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.50},
  URN =		{urn:nbn:de:0030-drops-102892},
  doi =		{10.4230/LIPIcs.STACS.2019.50},
  annote =	{Keywords: Communication complexity, Query complexity, Simulation theorem, Equality function}
}
Document
Cumulative Space in Black-White Pebbling and Resolution

Authors: Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko 2015] as a tool for obtaining results in cryptography. We consider instead the nondeterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10-15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström 2008, 2011], we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure.

Cite as

Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. Cumulative Space in Black-White Pebbling and Resolution. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 38:1-38:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{alwen_et_al:LIPIcs.ITCS.2017.38,
  author =	{Alwen, Jo\"{e}l and de Rezende, Susanna F. and Nordstr\"{o}m, Jakob and Vinyals, Marc},
  title =	{{Cumulative Space in Black-White Pebbling and Resolution}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{38:1--38:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.38},
  URN =		{urn:nbn:de:0030-drops-81918},
  doi =		{10.4230/LIPIcs.ITCS.2017.38},
  annote =	{Keywords: pebble game, pebbling, proof complexity, space, cumulative space, clause space, resolution, parallel resolution}
}
  • Refine by Author
  • 4 Nordström, Jakob
  • 4 de Rezende, Susanna F.
  • 2 Sokolov, Dmitry
  • 2 Vinyals, Marc
  • 1 Alwen, Joël
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Proof complexity
  • 1 Computing methodologies → Representation of polynomials
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Communication complexity
  • 1 Theory of computation → Complexity theory and logic
  • Show More...

  • Refine by Keyword
  • 3 proof complexity
  • 2 Nullstellensatz
  • 2 Proof complexity
  • 2 resolution
  • 1 Bounded arithmetic
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2019
  • 1 2017
  • 1 2020
  • 1 2021
  • 1 2022
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail