100 Search Results for "Sever�n, Daniel E."


Document
Invited Talk
Polynomial-Time Pseudodeterministic Constructions (Invited Talk)

Authors: Igor C. Oliveira

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
A randomised algorithm for a search problem is pseudodeterministic if it produces a fixed canonical solution to the search problem with high probability. In their seminal work on the topic, Gat and Goldwasser (2011) posed as their main open problem whether prime numbers can be pseudodeterministically constructed in polynomial time. We provide a positive solution to this question in the infinitely-often regime. In more detail, we give an unconditional polynomial-time randomised algorithm B such that, for infinitely many values of n, B(1ⁿ) outputs a canonical n-bit prime p_n with high probability. More generally, we prove that for every dense property Q of strings that can be decided in polynomial time, there is an infinitely-often pseudodeterministic polynomial-time construction of strings satisfying Q. This improves upon a subexponential-time pseudodeterministic construction of Oliveira and Santhanam (2017). This talk will cover the main ideas behind these constructions and discuss their implications, such as the existence of infinitely many primes with succinct and efficient representations.

Cite as

Igor C. Oliveira. Polynomial-Time Pseudodeterministic Constructions (Invited Talk). In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira:LIPIcs.STACS.2024.1,
  author =	{Oliveira, Igor C.},
  title =	{{Polynomial-Time Pseudodeterministic Constructions}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.1},
  URN =		{urn:nbn:de:0030-drops-197112},
  doi =		{10.4230/LIPIcs.STACS.2024.1},
  annote =	{Keywords: Pseudorandomness, Explicit Constructions, Pseudodeterministic Algorithms}
}
Document
Invited Talk
Structurally Tractable Graph Classes (Invited Talk)

Authors: Szymon Toruńczyk

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Sparsity theory, initiated by Ossona de Mendez and Nešetřil, identifies those classes of sparse graphs that are tractable in various ways - algorithmically, combinatorially, and logically - as exactly the nowhere dense classes. An ongoing effort aims at generalizing sparsity theory to classes of graphs that are not necessarily sparse. Twin-width theory, developed by Bonnet, Thomassé and co-authors, is a step in that direction. A theory unifying the two is anticipated. It is conjectured that the relevant notion characterising dense graph classes that are tractable, generalising nowhere denseness and bounded twin-width, is the notion of a monadically dependent class, introduced by Shelah in model theory. I will survey the recent, rapid progress in the understanding of those classes, and of the related monadically stable classes. This development combines tools from structural graph theory, logic (finite and infinite model theory), and algorithms (parameterised algorithms and range search queries).

Cite as

Szymon Toruńczyk. Structurally Tractable Graph Classes (Invited Talk). In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{torunczyk:LIPIcs.STACS.2024.3,
  author =	{Toru\'{n}czyk, Szymon},
  title =	{{Structurally Tractable Graph Classes}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.3},
  URN =		{urn:nbn:de:0030-drops-197134},
  doi =		{10.4230/LIPIcs.STACS.2024.3},
  annote =	{Keywords: Structural graph theory, Monadic dependence, monadic NIP, twin-width}
}
Document
Max Weight Independent Set in Sparse Graphs with No Long Claws

Authors: Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We revisit the recent polynomial-time algorithm for the Max Weight Independent Set (MWIS) problem in bounded-degree graphs that do not contain a fixed graph whose every component is a subdivided claw as an induced subgraph [Abrishami, Chudnovsky, Dibek, Rzążewski, SODA 2022]. First, we show that with an arguably simpler approach we can obtain a faster algorithm with running time n^{𝒪(Δ²)}, where n is the number of vertices of the instance and Δ is the maximum degree. Then we combine our technique with known results concerning tree decompositions and provide a polynomial-time algorithm for MWIS in graphs excluding a fixed graph whose every component is a subdivided claw as an induced subgraph, and a fixed biclique as a subgraph.

Cite as

Tara Abrishami, Maria Chudnovsky, Marcin Pilipczuk, and Paweł Rzążewski. Max Weight Independent Set in Sparse Graphs with No Long Claws. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abrishami_et_al:LIPIcs.STACS.2024.4,
  author =	{Abrishami, Tara and Chudnovsky, Maria and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l}},
  title =	{{Max Weight Independent Set in Sparse Graphs with No Long Claws}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.4},
  URN =		{urn:nbn:de:0030-drops-197148},
  doi =		{10.4230/LIPIcs.STACS.2024.4},
  annote =	{Keywords: Max Weight Independent Set, subdivided claw, hereditary classes}
}
Document
Satisfiability of Context-Free String Constraints with Subword-Ordering and Transducers

Authors: C. Aiswarya, Soumodev Mal, and Prakash Saivasan

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We study the satisfiability of string constraints where context-free membership constraints may be imposed on variables. Additionally a variable may be constrained to be a subword of a word obtained by shuffling variables and their transductions. The satisfiability problem is known to be undecidable even without rational transductions. It is known to be NExptime-complete without transductions, if the subword relations between variables do not have a cyclic dependency between them. We show that the satisfiability problem stays decidable in this fragment even when rational transductions are added. It is 2NExptime-complete with context-free membership, and NExptime-complete with only regular membership. For the lower bound we prove a technical lemma that is of independent interest: The length of the shortest word in the intersection of a pushdown automaton (of size 𝒪(n)) and n finite-state automata (each of size 𝒪(n)) can be double exponential in n.

Cite as

C. Aiswarya, Soumodev Mal, and Prakash Saivasan. Satisfiability of Context-Free String Constraints with Subword-Ordering and Transducers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aiswarya_et_al:LIPIcs.STACS.2024.5,
  author =	{Aiswarya, C. and Mal, Soumodev and Saivasan, Prakash},
  title =	{{Satisfiability of Context-Free String Constraints with Subword-Ordering and Transducers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.5},
  URN =		{urn:nbn:de:0030-drops-197154},
  doi =		{10.4230/LIPIcs.STACS.2024.5},
  annote =	{Keywords: satisfiability, subword, string constraints, context-free, transducers}
}
Document
Computing Twin-Width Parameterized by the Feedback Edge Number

Authors: Jakub Balabán, Robert Ganian, and Mathis Rocton

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The problem of whether and how one can compute the twin-width of a graph - along with an accompanying contraction sequence - lies at the forefront of the area of algorithmic model theory. While significant effort has been aimed at obtaining a fixed-parameter approximation for the problem when parameterized by twin-width, here we approach the question from a different perspective and consider whether one can obtain (near-)optimal contraction sequences under a larger parameterization, notably the feedback edge number k. As our main contributions, under this parameterization we obtain (1) a linear bikernel for the problem of either computing a 2-contraction sequence or determining that none exists and (2) an approximate fixed-parameter algorithm which computes an 𝓁-contraction sequence (for an arbitrary specified 𝓁) or determines that the twin-width of the input graph is at least 𝓁. These algorithmic results rely on newly obtained insights into the structure of optimal contraction sequences, and as a byproduct of these we also slightly tighten the bound on the twin-width of graphs with small feedback edge number.

Cite as

Jakub Balabán, Robert Ganian, and Mathis Rocton. Computing Twin-Width Parameterized by the Feedback Edge Number. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.STACS.2024.7,
  author =	{Balab\'{a}n, Jakub and Ganian, Robert and Rocton, Mathis},
  title =	{{Computing Twin-Width Parameterized by the Feedback Edge Number}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.7},
  URN =		{urn:nbn:de:0030-drops-197170},
  doi =		{10.4230/LIPIcs.STACS.2024.7},
  annote =	{Keywords: twin-width, parameterized complexity, kernelization, feedback edge number}
}
Document
Testing Equivalence to Design Polynomials

Authors: Omkar Baraskar, Agrim Dewan, and Chandan Saha

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
An n-variate polynomial g of degree d is a (n,d,t) design polynomial if the degree of the gcd of every pair of monomials of g is at most t-1. The power symmetric polynomial PSym_{n,d} : = ∑_{i = 1}ⁿ x^d_i and the sum-product polynomial SP_{s,d} : = ∑_{i = 1}^{s}∏_{j = 1}^{d} x_{i,j} are instances of design polynomials for t = 1. Another example is the Nisan-Wigderson design polynomial NW, which has been used extensively to prove various arithmetic circuit lower bounds. Given black-box access to an n-variate, degree-d polynomial f(𝐱) ∈ 𝔽[𝐱], how fast can we check if there exist an A ∈ GL(n, 𝔽) and a 𝐛 ∈ 𝔽ⁿ such that f(A𝐱+𝐛) is a (n,d,t) design polynomial? We call this problem "testing equivalence to design polynomials", or alternatively, "equivalence testing for design polynomials". In this work, we present a randomized algorithm that finds (A, 𝐛) such that f(A𝐱+𝐛) is a (n,d,t) design polynomial, if such A and 𝐛 exist, provided t ≤ d/3. The algorithm runs in (nd)^O(t) time and works over any sufficiently large 𝔽 of characteristic 0 or > d. As applications of this test, we show two results - one is structural and the other is algorithmic. The structural result establishes a polynomial-time equivalence between the graph isomorphism problem and the polynomial equivalence problem for design polynomials. The algorithmic result implies that Patarin’s scheme (EUROCRYPT 1996) can be broken in quasi-polynomial time if a random sparse polynomial is used in the key generation phase. We also give an efficient learning algorithm for n-variate random affine projections of multilinear degree-d design polynomials, provided n ≥ d⁴. If one obtains an analogous result under the weaker assumption "n ≥ d^ε, for any ε > 0", then the NW family is not VNP-complete unless there is a VNP-complete family whose random affine projections are learnable. It is not known if random affine projections of the permanent are learnable. The above algorithms are obtained by using the vector space decomposition framework, introduced by Kayal and Saha (STOC 2019) and Garg, Kayal and Saha (FOCS 2020), for learning non-degenerate arithmetic circuits. A key technical difference between the analysis in the papers by Garg, Kayal and Saha (FOCS 2020) and Bhargava, Garg, Kayal and Saha (RANDOM 2022) and the analysis here is that a certain adjoint algebra, which turned out to be trivial (i.e., diagonalizable) in prior works, is non-trivial in our case. However, we show that the adjoint arising here is triangularizable which then helps in carrying out the vector space decomposition step.

Cite as

Omkar Baraskar, Agrim Dewan, and Chandan Saha. Testing Equivalence to Design Polynomials. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{baraskar_et_al:LIPIcs.STACS.2024.9,
  author =	{Baraskar, Omkar and Dewan, Agrim and Saha, Chandan},
  title =	{{Testing Equivalence to Design Polynomials}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{9:1--9:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.9},
  URN =		{urn:nbn:de:0030-drops-197193},
  doi =		{10.4230/LIPIcs.STACS.2024.9},
  annote =	{Keywords: Polynomial equivalence, design polynomials, graph isomorphism, vector space decomposition}
}
Document
Temporalizing Digraphs via Linear-Size Balanced Bi-Trees

Authors: Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In a directed graph D on vertex set v₁,… ,v_n, a forward arc is an arc v_iv_j where i < j. A pair v_i,v_j is forward connected if there is a directed path from v_i to v_j consisting of forward arcs. In the Forward Connected Pairs Problem (FCPP), the input is a strongly connected digraph D, and the output is the maximum number of forward connected pairs in some vertex enumeration of D. We show that FCPP is in APX, as one can efficiently enumerate the vertices of D in order to achieve a quadratic number of forward connected pairs. For this, we construct a linear size balanced bi-tree T (an out-branching and an in-branching with same size and same root which are vertex disjoint in the sense that they share no vertex apart from their common root). The existence of such a T was left as an open problem (Brunelli, Crescenzi, Viennot, Networks 2023) motivated by the study of temporal paths in temporal networks. More precisely, T can be constructed in quadratic time (in the number of vertices) and has size at least n/3. The algorithm involves a particular depth-first search tree (Left-DFS) of independent interest, and shows that every strongly connected directed graph has a balanced separator which is a circuit. Remarkably, in the request version RFCPP of FCPP, where the input is a strong digraph D and a set of requests R consisting of pairs {x_i,y_i}, there is no constant c > 0 such that one can always find an enumeration realizing c.|R| forward connected pairs {x_i,y_i} (in either direction).

Cite as

Stéphane Bessy, Stéphan Thomassé, and Laurent Viennot. Temporalizing Digraphs via Linear-Size Balanced Bi-Trees. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bessy_et_al:LIPIcs.STACS.2024.13,
  author =	{Bessy, St\'{e}phane and Thomass\'{e}, St\'{e}phan and Viennot, Laurent},
  title =	{{Temporalizing Digraphs via Linear-Size Balanced Bi-Trees}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.13},
  URN =		{urn:nbn:de:0030-drops-197235},
  doi =		{10.4230/LIPIcs.STACS.2024.13},
  annote =	{Keywords: digraph, temporal graph, temporalization, bi-tree, #1\{in-branching, out-branching, in-tree, out-tree\}, forward connected pairs, left-maximal DFS}
}
Document
A Subquadratic Bound for Online Bisection

Authors: Marcin Bienkowski and Stefan Schmid

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The online bisection problem is a natural dynamic variant of the classic optimization problem, where one has to dynamically maintain a partition of n elements into two clusters of cardinality n/2. During runtime, an online algorithm is given a sequence of requests, each being a pair of elements: an inter-cluster request costs one unit while an intra-cluster one is free. The algorithm may change the partition, paying a unit cost for each element that changes its cluster. This natural problem admits a simple deterministic O(n²)-competitive algorithm [Avin et al., DISC 2016]. While several significant improvements over this result have been obtained since the original work, all of them either limit the generality of the input or assume some form of resource augmentation (e.g., larger clusters). Moreover, the algorithm of Avin et al. achieves the best known competitive ratio even if randomization is allowed. In this paper, we present the first randomized online algorithm that breaks this natural quadratic barrier and achieves a competitive ratio of Õ(n^{23/12}) without resource augmentation and for an arbitrary sequence of requests.

Cite as

Marcin Bienkowski and Stefan Schmid. A Subquadratic Bound for Online Bisection. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.14,
  author =	{Bienkowski, Marcin and Schmid, Stefan},
  title =	{{A Subquadratic Bound for Online Bisection}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.14},
  URN =		{urn:nbn:de:0030-drops-197247},
  doi =		{10.4230/LIPIcs.STACS.2024.14},
  annote =	{Keywords: Bisection, Graph Partitioning, online balanced Repartitioning, online Algorithms, competitive Analysis}
}
Document
An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

Authors: Marcin Bienkowski and Guy Even

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n equidistant points). In step t, the order of the elements is changed to the t-th permutation, and then the t-th request is served. The cost of the output consists of two parts per step: request cost and rearrangement cost. The former is the current distance between the endpoints of the request, while the latter is proportional to the number of adjacent element swaps required to move from one permutation to the consecutive permutation. The goal is to find a minimum cost solution. We present a deterministic O(log n log log n)-approximation algorithm for this problem, improving over a randomized O(log² n)-approximation by Olver et al. [Neil Olver et al., 2018]. Our algorithm is based on first solving spreading-metric LP relaxation on a time-expanded graph, applying a tree decomposition on the basis of the LP solution, and finally converting the tree decomposition to a sequence of permutations. The techniques we employ are general and have the potential to be useful for other dynamic graph optimization problems.

Cite as

Marcin Bienkowski and Guy Even. An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.15,
  author =	{Bienkowski, Marcin and Even, Guy},
  title =	{{An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.15},
  URN =		{urn:nbn:de:0030-drops-197252},
  doi =		{10.4230/LIPIcs.STACS.2024.15},
  annote =	{Keywords: Minimum Linear Arrangement, dynamic Variant, Optimization Problems, Graph Problems, approximation Algorithms}
}
Document
Gapped String Indexing in Subquadratic Space and Sublinear Query Time

Authors: Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P. Pissis, Eva Rotenberg, and Teresa Anna Steiner

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In Gapped String Indexing, the goal is to compactly represent a string S of length n such that for any query consisting of two strings P₁ and P₂, called patterns, and an integer interval [α, β], called gap range, we can quickly find occurrences of P₁ and P₂ in S with distance in [α, β]. Gapped String Indexing is a central problem in computational biology and text mining and has thus received significant research interest, including parameterized and heuristic approaches. Despite this interest, the best-known time-space trade-offs for Gapped String Indexing are the straightforward 𝒪(n) space and 𝒪(n+ occ) query time or Ω(n²) space and Õ(|P₁| + |P₂| + occ) query time. We break through this barrier obtaining the first interesting trade-offs with polynomially subquadratic space and polynomially sublinear query time. In particular, we show that, for every 0 ≤ δ ≤ 1, there is a data structure for Gapped String Indexing with either Õ(n^{2-δ/3}) or Õ(n^{3-2δ}) space and Õ(|P₁| + |P₂| + n^{δ}⋅ (occ+1)) query time, where occ is the number of reported occurrences. As a new fundamental tool towards obtaining our main result, we introduce the Shifted Set Intersection problem: preprocess a collection of sets S₁, …, S_k of integers such that for any query consisting of three integers i,j,s, we can quickly output YES if and only if there exist a ∈ S_i and b ∈ S_j with a+s = b. We start by showing that the Shifted Set Intersection problem is equivalent to the indexing variant of 3SUM (3SUM Indexing) [Golovnev et al., STOC 2020]. We then give a data structure for Shifted Set Intersection with gaps, which entails a solution to the Gapped String Indexing problem. Furthermore, we enhance our data structure for deciding Shifted Set Intersection, so that we can support the reporting variant of the problem, i.e., outputting all certificates in the affirmative case. Via the obtained equivalence to 3SUM Indexing, we thus give new improved data structures for the reporting variant of 3SUM Indexing, and we show how this improves upon the state-of-the-art solution for Jumbled Indexing [Chan and Lewenstein, STOC 2015] for any alphabet of constant size σ > 5.

Cite as

Philip Bille, Inge Li Gørtz, Moshe Lewenstein, Solon P. Pissis, Eva Rotenberg, and Teresa Anna Steiner. Gapped String Indexing in Subquadratic Space and Sublinear Query Time. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.STACS.2024.16,
  author =	{Bille, Philip and G{\o}rtz, Inge Li and Lewenstein, Moshe and Pissis, Solon P. and Rotenberg, Eva and Steiner, Teresa Anna},
  title =	{{Gapped String Indexing in Subquadratic Space and Sublinear Query Time}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.16},
  URN =		{urn:nbn:de:0030-drops-197262},
  doi =		{10.4230/LIPIcs.STACS.2024.16},
  annote =	{Keywords: data structures, string indexing, indexing with gaps, two patterns}
}
Document
Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters

Authors: Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, n. In this paper, we focus on properties for which the size of the certificates does not depend on n but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: Θ(log k) for k-colorability (and even exactly ⌈ log k ⌉ bits in the anonymous model while previous works had only proved a 2-bit lower bound); (1/2)log t+o(log t) for dominating sets at distance t (an unexpected and tighter-than-usual bound) ; and Θ(log Δ) for perfect matching in graphs of maximum degree Δ (the first non-trivial bound parameterized by Δ). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.

Cite as

Nicolas Bousquet, Laurent Feuilloley, and Sébastien Zeitoun. Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.STACS.2024.21,
  author =	{Bousquet, Nicolas and Feuilloley, Laurent and Zeitoun, S\'{e}bastien},
  title =	{{Local Certification of Local Properties: Tight Bounds, Trade-Offs and New Parameters}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.21},
  URN =		{urn:nbn:de:0030-drops-197317},
  doi =		{10.4230/LIPIcs.STACS.2024.21},
  annote =	{Keywords: Local certification, local properties, proof-labeling schemes, locally checkable proofs, optimal certification size, colorability, dominating set, perfect matching, fault-tolerance, graph structure}
}
Document
Fault-tolerant k-Supplier with Outliers

Authors: Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
We present approximation algorithms for the Fault-tolerant k-Supplier with Outliers (FkSO) problem. This is a common generalization of two known problems - k-Supplier with Outliers, and Fault-tolerant k-Supplier - each of which generalize the well-known k-Supplier problem. In the k-Supplier problem the goal is to serve n clients C, by opening k facilities from a set of possible facilities F; the objective function is the farthest that any client must travel to access an open facility. In FkSO, each client v has a fault-tolerance 𝓁_v, and now desires 𝓁_v facilities to serve it; so each client v’s contribution to the objective function is now its distance to the 𝓁_v^th closest open facility. Furthermore, we are allowed to choose m clients that we will serve, and only those clients contribute to the objective function, while the remaining n-m are considered outliers. Our main result is a (4t-1)-approximation for the FkSO problem, where t is the number of distinct values of 𝓁_v that appear in the instance. At t = 1, i.e. in the case where the 𝓁_v’s are uniformly some 𝓁, this yields a 3-approximation, improving upon the 11-approximation given for the uniform case by Inamdar and Varadarajan [2020], who also introduced the problem. Our result for the uniform case matches tight 3-approximations that exist for k-Supplier, k-Supplier with Outliers, and Fault-tolerant k-Supplier. Our key technical contribution is an application of the round-or-cut schema to FkSO. Guided by an LP relaxation, we reduce to a simpler optimization problem, which we can solve to obtain distance bounds for the "round" step, and valid inequalities for the "cut" step. By varying how we reduce to the simpler problem, we get varying distance bounds - we include a variant that gives a (2^t + 1)-approximation, which is better for t ∈ {2,3}. In addition, for t = 1, we give a more straightforward application of round-or-cut, yielding a 3-approximation that is much simpler than our general algorithm.

Cite as

Deeparnab Chakrabarty, Luc Cote, and Ankita Sarkar. Fault-tolerant k-Supplier with Outliers. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chakrabarty_et_al:LIPIcs.STACS.2024.23,
  author =	{Chakrabarty, Deeparnab and Cote, Luc and Sarkar, Ankita},
  title =	{{Fault-tolerant k-Supplier with Outliers}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.23},
  URN =		{urn:nbn:de:0030-drops-197336},
  doi =		{10.4230/LIPIcs.STACS.2024.23},
  annote =	{Keywords: Clustering, approximation algorithms, round-or-cut}
}
Document
Approximate Circular Pattern Matching Under Edit Distance

Authors: Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
In the k-Edit Circular Pattern Matching (k-Edit CPM) problem, we are given a length-n text T, a length-m pattern P, and a positive integer threshold k, and we are to report all starting positions of the substrings of T that are at edit distance at most k from some cyclic rotation of P. In the decision version of the problem, we are to check if any such substring exists. Very recently, Charalampopoulos et al. [ESA 2022] presented 𝒪(nk²)-time and 𝒪(nk log³ k)-time solutions for the reporting and decision versions of k-Edit CPM, respectively. Here, we show that the reporting and decision versions of k-Edit CPM can be solved in 𝒪(n+(n/m) k⁶) time and 𝒪(n+(n/m) k⁵ log³ k) time, respectively, thus obtaining the first algorithms with a complexity of the type 𝒪(n+(n/m) poly(k)) for this problem. Notably, our algorithms run in 𝒪(n) time when m = Ω(k⁶) and are superior to the previous respective solutions when m = ω(k⁴). We provide a meta-algorithm that yields efficient algorithms in several other interesting settings, such as when the strings are given in a compressed form (as straight-line programs), when the strings are dynamic, or when we have a quantum computer. We obtain our solutions by exploiting the structure of approximate circular occurrences of P in T, when T is relatively short w.r.t. P. Roughly speaking, either the starting positions of approximate occurrences of rotations of P form 𝒪(k⁴) intervals that can be computed efficiently, or some rotation of P is almost periodic (is at a small edit distance from a string with small period). Dealing with the almost periodic case is the most technically demanding part of this work; we tackle it using properties of locked fragments (originating from [Cole and Hariharan, SICOMP 2002]).

Cite as

Panagiotis Charalampopoulos, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba. Approximate Circular Pattern Matching Under Edit Distance. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 24:1-24:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.STACS.2024.24,
  author =	{Charalampopoulos, Panagiotis and Pissis, Solon P. and Radoszewski, Jakub and Rytter, Wojciech and Wale\'{n}, Tomasz and Zuba, Wiktor},
  title =	{{Approximate Circular Pattern Matching Under Edit Distance}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{24:1--24:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.24},
  URN =		{urn:nbn:de:0030-drops-197346},
  doi =		{10.4230/LIPIcs.STACS.2024.24},
  annote =	{Keywords: circular pattern matching, approximate pattern matching, edit distance}
}
Document
Depth-3 Circuit Lower Bounds for k-OV

Authors: Tameem Choudhury and Karteek Sreenivasaiah

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The 2-Orthogonal Vectors (2-OV) problem is the following: given two tuples A and B of n Boolean vectors, each of dimension d, decide if there exist vectors u ∈ A, and v ∈ B, such that u and v are orthogonal. This problem, and its generalization k-OV defined analogously for k tuples, are central problems in the area of fine-grained complexity. One of the major conjectures in fine-grained complexity is that k-OV cannot be solved by a randomised algorithm in n^{k-ε}poly(d) time for any constant ε > 0. In this paper, we are interested in unconditional lower bounds against k-OV, but for weaker models of computation than the general Turing Machine. In particular, we are interested in circuit lower bounds to computing k-OV by Boolean circuit families of depth 3 of the form OR-AND-OR, or equivalently, a disjunction of CNFs. We show that for all k ≤ d, any disjunction of t-CNFs computing k-OV requires size Ω((n/t)^k). In particular, when k is a constant, any disjunction of k-CNFs computing k-OV needs to use Ω(n^k) CNFs. This matches the brute-force construction, and for each fixed k > 2, this is the first unconditional Ω(n^k) lower bound against k-OV for a computation model that can compute it in size O(n^k). Our results partially resolve a conjecture by Kane and Williams [Daniel M. Kane and Richard Ryan Williams, 2019] (page 12, conjecture 10) about depth-3 AC⁰ circuits computing 2-OV. As a secondary result, we show an exponential lower bound on the size of AND∘OR∘AND circuits computing 2-OV when d is very large. Since 2-OV reduces to k-OV by projections trivially, this lower bound works against k-OV as well.

Cite as

Tameem Choudhury and Karteek Sreenivasaiah. Depth-3 Circuit Lower Bounds for k-OV. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{choudhury_et_al:LIPIcs.STACS.2024.25,
  author =	{Choudhury, Tameem and Sreenivasaiah, Karteek},
  title =	{{Depth-3 Circuit Lower Bounds for k-OV}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.25},
  URN =		{urn:nbn:de:0030-drops-197359},
  doi =		{10.4230/LIPIcs.STACS.2024.25},
  annote =	{Keywords: fine grained complexity, k-OV, circuit lower bounds, depth-3 circuits}
}
Document
A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression

Authors: Nicola Cotumaccio

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The model of generalized automata, introduced by Eilenberg in 1974, allows representing a regular language more concisely than conventional automata by allowing edges to be labeled not only with characters, but also strings. Giammaresi and Montalbano introduced a notion of determinism for generalized automata [STACS 1995]. While generalized deterministic automata retain many properties of conventional deterministic automata, the uniqueness of a minimal generalized deterministic automaton is lost. In the first part of the paper, we show that the lack of uniqueness can be explained by introducing a set 𝒲(𝒜) associated with a generalized automaton 𝒜. The set 𝒲(𝒜) is always trivially equal to the set of all prefixes of the language recognized by the automaton, if 𝒜 is a conventional automaton, but this need not be true for generalized automata. By fixing 𝒲(𝒜), we are able to derive for the first time a full Myhill-Nerode theorem for generalized automata, which contains the textbook Myhill-Nerode theorem for conventional automata as a degenerate case. In the second part of the paper, we show that the set 𝒲(𝒜) leads to applications for pattern matching and data compression. Wheeler automata [TCS 2017, SODA 2020] are a popular class of automata that can be compactly stored using e log σ (1 + o(1)) + O(e) bits (e being the number of edges, σ being the size of the alphabet) in such a way that pattern matching queries can be solved in Õ(m) time (m being the length of the pattern). In the paper, we show how to extend these results to generalized automata. More precisely, a Wheeler generalized automata can be stored using 𝔢 log σ (1 + o(1)) + O(e + rn) bits so that pattern matching queries can be solved in Õ(rm) time, where 𝔢 is the total length of all edge labels, r is the maximum length of an edge label and n is the number of states.

Cite as

Nicola Cotumaccio. A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cotumaccio:LIPIcs.STACS.2024.26,
  author =	{Cotumaccio, Nicola},
  title =	{{A Myhill-Nerode Theorem for Generalized Automata, with Applications to Pattern Matching and Compression}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.26},
  URN =		{urn:nbn:de:0030-drops-197369},
  doi =		{10.4230/LIPIcs.STACS.2024.26},
  annote =	{Keywords: Generalized Automata, Myhill-Nerode Theorem, Regular Languages, Wheeler Graphs, FM-index, Burrows-Wheeler Transform}
}
  • Refine by Author
  • 10 Lokshtanov, Daniel
  • 10 Marx, Dániel
  • 7 Agrawal, Akanksha
  • 7 Saurabh, Saket
  • 5 Bonnet, Édouard
  • Show More...

  • Refine by Classification
  • 16 Theory of computation → Design and analysis of algorithms
  • 10 Theory of computation → Parameterized complexity and exact algorithms
  • 9 Theory of computation → Graph algorithms analysis
  • 6 Mathematics of computing → Graph algorithms
  • 6 Theory of computation → Approximation algorithms analysis
  • Show More...

  • Refine by Keyword
  • 6 treewidth
  • 5 kernelization
  • 5 parameterized complexity
  • 3 Parameterized Complexity
  • 3 approximation algorithms
  • Show More...

  • Refine by Type
  • 100 document

  • Refine by Publication Year
  • 31 2024
  • 15 2018
  • 13 2020
  • 12 2019
  • 6 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail