29 Search Results for "Bhattacharyya, Arnab"


Document
Testing Depth First Search Numbering

Authors: Artur Czumaj, Christian Sohler, and Stefan Walzer

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Property Testing is a formal framework to study the computational power and complexity of sampling from combinatorial objects. A central goal in standard graph property testing is to understand which graph properties are testable with sublinear query complexity. Here, a graph property P is testable with a sublinear query complexity if there is an algorithm that makes a sublinear number of queries to the input graph and accepts with probability at least 2/3, if the graph has property P, and rejects with probability at least 2/3 if it is ε-far from every graph that has property P. In this paper, we introduce a new variant of the bounded degree graph model. In this variant, in addition to the standard representation of a bounded degree graph, we assume that every vertex v has a unique label num(v) from {1, … , |V|}, and in addition to the standard queries in the bounded degree graph model, we also allow a property testing algorithm to query for the label of a vertex (but not for a vertex with a given label). Our new model is motivated by certain graph processes such as a DFS traversal, which assign consecutive numbers (labels) to the vertices of the graph. We want to study which of these numberings can be tested in sublinear time. As a first step in understanding such a model, we develop a property testing algorithm for discovery times of a DFS traversal with query complexity O(n^{1/3}/ε) and for constant ε > 0 we give a matching lower bound.

Cite as

Artur Czumaj, Christian Sohler, and Stefan Walzer. Testing Depth First Search Numbering. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 78:1-78:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ESA.2025.78,
  author =	{Czumaj, Artur and Sohler, Christian and Walzer, Stefan},
  title =	{{Testing Depth First Search Numbering}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{78:1--78:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.78},
  URN =		{urn:nbn:de:0030-drops-245466},
  doi =		{10.4230/LIPIcs.ESA.2025.78},
  annote =	{Keywords: Randomized Algorithms, Graph Algorithms, Property Testing}
}
Document
Parameterized Approximability for Modular Linear Equations

Authors: Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We consider the Min-r-Lin(ℤ_m) problem: given a system S of length-r linear equations modulo m, find Z ⊆ S of minimum cardinality such that S-Z is satisfiable. The problem is NP-hard and UGC-hard to approximate in polynomial time within any constant factor even when r = m = 2. We focus on parameterized approximation with solution size as the parameter. Dabrowski, Jonsson, Ordyniak, Osipov and Wahlström [SODA-2023] showed that Min-r-Lin(ℤ_m) is in FPT if m is prime (i.e. ℤ_m is a field), and it is W[1]-hard if m is not a prime power. We show that Min-r-Lin(ℤ_{pⁿ}) is FPT-approximable within a factor of 2 for every prime p and integer n ≥ 2. This implies that Min-2-Lin(ℤ_m), m ∈ ℤ^+, is FPT-approximable within a factor of 2ω(m) where ω(m) counts the number of distinct prime divisors of m. The high-level idea behind the algorithm is to solve tighter and tighter relaxations of the problem, decreasing the set of possible values for the variables at each step. When working over ℤ_{pⁿ} and viewing the values in base-p, one can roughly think of a relaxation as fixing the number of trailing zeros and the least significant nonzero digits of the values assigned to the variables. To solve the relaxed problem, we construct a certain graph where solutions can be identified with a particular collection of cuts. The relaxation may hide obstructions that will only become visible in the next iteration of the algorithm, which makes it difficult to find optimal solutions. To deal with this, we use a strategy based on shadow removal [Marx & Razgon, STOC-2011] to compute solutions that (1) cost at most twice as much as the optimum and (2) allow us to reduce the set of values for all variables simultaneously. We complement the algorithmic result with two lower bounds, ruling out constant-factor FPT-approximation for Min-3-Lin(R) over any nontrivial ring R and for Min-2-Lin(R) over some finite commutative rings R.

Cite as

Konrad K. Dabrowski, Peter Jonsson, Sebastian Ordyniak, George Osipov, and Magnus Wahlström. Parameterized Approximability for Modular Linear Equations. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 88:1-88:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dabrowski_et_al:LIPIcs.ESA.2025.88,
  author =	{Dabrowski, Konrad K. and Jonsson, Peter and Ordyniak, Sebastian and Osipov, George and Wahlstr\"{o}m, Magnus},
  title =	{{Parameterized Approximability for Modular Linear Equations}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{88:1--88:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.88},
  URN =		{urn:nbn:de:0030-drops-245562},
  doi =		{10.4230/LIPIcs.ESA.2025.88},
  annote =	{Keywords: parameterized complexity, approximation algorithms, linear equations}
}
Document
Property Testing of Curve Similarity

Authors: Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We propose sublinear algorithms for probabilistic testing of the discrete and continuous Fréchet distance - a standard similarity measure for curves. We assume the algorithm is given access to the input curves via a query oracle: a query returns the set of vertices of the curve that lie within a radius δ of a specified vertex of the other curve. The goal is to use a small number of queries to determine with constant probability whether the two curves are similar (i.e., their discrete Fréchet distance is at most δ) or they are "ε-far" (for 0 < ε < 2) from being similar, i.e., more than an ε-fraction of the two curves must be ignored for them to become similar. We present two algorithms which are sublinear assuming that the curves are t-approximate shortest paths in the ambient metric space, for some t ≪ n. The first algorithm uses O(t/ε log t/ε) queries and is given the value of t in advance. The second algorithm does not have explicit knowledge of the value of t and therefore needs to gain implicit knowledge of the straightness of the input curves through its queries. We show that the discrete Fréchet distance can still be tested using roughly O({t³+t² log n}/ε) queries ignoring logarithmic factors in t. Our algorithms work in a matrix representation of the input and may be of independent interest to matrix testing. Our algorithms use a mild uniform sampling condition that constrains the edge lengths of the curves, similar to a polynomially bounded aspect ratio. Applied to testing the continuous Fréchet distance of t-straight curves, our algorithms can be used for (1+ε')-approximate testing using essentially the same bounds as stated above with an additional factor of poly(1/(ε')).

Cite as

Peyman Afshani, Maike Buchin, Anne Driemel, Marena Richter, and Sampson Wong. Property Testing of Curve Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 84:1-84:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2025.84,
  author =	{Afshani, Peyman and Buchin, Maike and Driemel, Anne and Richter, Marena and Wong, Sampson},
  title =	{{Property Testing of Curve Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{84:1--84:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.84},
  URN =		{urn:nbn:de:0030-drops-245522},
  doi =		{10.4230/LIPIcs.ESA.2025.84},
  annote =	{Keywords: Fr\'{e}chet distance, Trajectory Analysis, Curve Similarity, Property Testing, Monotonicity Testing}
}
Document
RANDOM
Quantum Property Testing in Sparse Directed Graphs

Authors: Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We initiate the study of quantum property testing in sparse directed graphs, and more particularly in the unidirectional model, where the algorithm is allowed to query only the outgoing edges of a vertex. In the classical unidirectional model, the problem of testing k-star-freeness, and more generally k-source-subgraph-freeness, is almost maximally hard for large k. We prove that this problem has almost quadratic advantage in the quantum setting. Moreover, we show that this advantage is nearly tight, by showing a quantum lower bound using the method of dual polynomials on an intermediate problem for a new, property testing version of the k-collision problem that was not studied before. To illustrate that not all problems in graph property testing admit such a quantum speedup, we consider the problem of 3-colorability in the related undirected bounded-degree model, when graphs are now undirected. This problem is maximally hard to test classically, and we show that also quantumly it requires a linear number of queries.

Cite as

Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó. Quantum Property Testing in Sparse Directed Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2025.32,
  author =	{Apers, Simon and Magniez, Fr\'{e}d\'{e}ric and Sen, Sayantan and Szab\'{o}, D\'{a}niel},
  title =	{{Quantum Property Testing in Sparse Directed Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  URN =		{urn:nbn:de:0030-drops-243987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  annote =	{Keywords: property testing, quantum computing, bounded-degree directed graphs, dual polynomial method, collision finding}
}
Document
RANDOM
Testing Isomorphism of Boolean Functions over Finite Abelian Groups

Authors: Swarnalipa Datta, Arijit Ghosh, Chandrima Kayal, Manaswi Paraashar, and Manmatha Roy

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
Let f and g be Boolean functions over a finite Abelian group 𝒢, where g is fully known and f is accessible via queries; that is, given any x ∈ 𝒢, we can obtain the value f(x). We study the problem of tolerant isomorphism testing: given parameters ε ≥ 0 and τ > 0, the goal is to determine, using as few queries as possible, whether there exists an automorphism σ of 𝒢 such that the fractional Hamming distance between f∘σ and g is at most ε, or whether for every automorphism σ, the distance is at least ε + τ. We design an efficient tolerant property testing algorithm for this problem over finite Abelian groups with constant exponent. The exponent of a finite group refers to the largest order of any element in the group. The query complexity of our algorithm is polynomial in s and 1/τ, where s bounds the spectral norm of the function g, and τ is the tolerance parameter. In addition, we present an improved algorithm in the case where g is Fourier sparse, meaning that its Fourier expansion contains only a small number of nonzero coefficients. Our approach draws on key ideas from Abelian group theory and Fourier analysis, including the annihilator of a subgroup, Pontryagin duality, and a pseudo inner product defined over finite Abelian groups. We believe that these techniques will be useful more broadly in the design of property testing algorithms.

Cite as

Swarnalipa Datta, Arijit Ghosh, Chandrima Kayal, Manaswi Paraashar, and Manmatha Roy. Testing Isomorphism of Boolean Functions over Finite Abelian Groups. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 66:1-66:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.APPROX/RANDOM.2025.66,
  author =	{Datta, Swarnalipa and Ghosh, Arijit and Kayal, Chandrima and Paraashar, Manaswi and Roy, Manmatha},
  title =	{{Testing Isomorphism of Boolean Functions over Finite Abelian Groups}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{66:1--66:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.66},
  URN =		{urn:nbn:de:0030-drops-244328},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.66},
  annote =	{Keywords: Analysis of Boolean functions, Abelian groups, Automorphism group, Function isomorphism, Spectral norm}
}
Document
APPROX
Directed Buy-At-Bulk Spanners

Authors: Elena Grigorescu, Nithish Kumar, and Young-San Lin

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We present a framework that unifies directed buy-at-bulk network design and directed spanner problems, namely, buy-at-bulk spanners. The goal is to find a minimum-cost routing solution for network design problems that captures economies at scale, while satisfying demands and distance constraints for terminal pairs. A more restricted version of this problem was shown to be O(2^{log^{1-ε} n})-hard to approximate, where n is the number of vertices, under a standard complexity assumption, by Elkin and Peleg (Theory of Computing Systems, 2007). Our results for buy-at-bulk spanners are the following. - When the edge lengths are integral with magnitude polynomial in n we present: 1) An Õ(n^{4/5 + ε})-approximation polynomial-time randomized algorithm for uniform demands. 2) An Õ(k^{1/2 + ε})-approximation polynomial-time randomized algorithm for general demands, where k is the number of terminal pairs. This can be improved to an Õ(k^{ε})-approximation algorithm for the single-source problem. The same approximation ratios hold in the online setting. - When the edge lengths are rational and well-conditioned, we present an Õ(k^{1/2 + ε})-approximation polynomial-time randomized algorithm that may slightly violate the distance constraints. The result can be improved to an Õ(k^ε)-approximation algorithm for the single-source problem. The same approximation ratios hold for the online setting when the condition number is given in advance. To the best of our knowledge, these are the first sublinear factor approximation algorithms for directed buy-at-bulk spanners. We allow the edge lengths to be negative and the demands to be non-unit, unlike the previous literature. Our approximation ratios match the state-of-the-art ratios in special cases, namely, buy-at-bulk network design by Antonakopoulos (WAOA, 2010) and (online) weighted spanners by Grigorescu, Kumar, and Lin (APPROX 2023). Furthermore, we improve the competitive ratio for online buy-at-bulk by Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018) by a factor of log R, where R is the ratio between the maximum demand and the minimum demand.

Cite as

Elena Grigorescu, Nithish Kumar, and Young-San Lin. Directed Buy-At-Bulk Spanners. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 22:1-22:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grigorescu_et_al:LIPIcs.APPROX/RANDOM.2025.22,
  author =	{Grigorescu, Elena and Kumar, Nithish and Lin, Young-San},
  title =	{{Directed Buy-At-Bulk Spanners}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{22:1--22:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.22},
  URN =		{urn:nbn:de:0030-drops-243885},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.22},
  annote =	{Keywords: buy-at-bulk spanners, minimum density junction tree, resource constrained shortest path}
}
Document
List Decoding Quotient Reed-Muller Codes

Authors: Omri Gotlib, Tali Kaufman, and Shachar Lovett

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Reed-Muller codes consist of evaluations of n-variate polynomials over a finite field 𝔽 with degree at most d. Much like every linear code, Reed-Muller codes can be characterized by constraints, where a codeword is valid if and only if it satisfies all degree-d constraints. For a subset X̃ ⊆ 𝔽ⁿ, we introduce the notion of X̃-quotient Reed-Muller code. A function F:X̃ → 𝔽 is a valid codeword in the quotient code if it satisfies all the constraints of degree-d polynomials lying in X̃. This gives rise to a novel phenomenon: a quotient codeword may have many extensions to original codewords. This weakens the connection between original codewords and quotient codewords which introduces a richer range of behaviors along with substantial new challenges. Our goal is to answer the following question: what properties of X̃ will imply that the quotient code inherits its distance and list-decoding radius from the original code? We address this question using techniques developed by Bhowmick and Lovett [Abhishek Bhowmick and Shachar Lovett, 2014], identifying key properties of 𝔽ⁿ used in their proof and extending them to general subsets X̃ ⊆ 𝔽ⁿ. By introducing a new tool, we overcome the novel challenge in analyzing the quotient code that arises from the weak connection between original and quotient codewords. This enables us to apply known results from additive combinatorics and algebraic geometry [David Kazhdan and Tamar Ziegler, 2018; David Kazhdan and Tamar Ziegler, 2019; Amichai Lampert and Tamar Ziegler, 2021] to show that when X̃ is a high rank variety, X̃-quotient Reed-Muller codes inherit the distance and list-decoding parameters from the original Reed-Muller codes.

Cite as

Omri Gotlib, Tali Kaufman, and Shachar Lovett. List Decoding Quotient Reed-Muller Codes. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 1:1-1:44, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gotlib_et_al:LIPIcs.CCC.2025.1,
  author =	{Gotlib, Omri and Kaufman, Tali and Lovett, Shachar},
  title =	{{List Decoding Quotient Reed-Muller Codes}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{1:1--1:44},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.1},
  URN =		{urn:nbn:de:0030-drops-236957},
  doi =		{10.4230/LIPIcs.CCC.2025.1},
  annote =	{Keywords: Reed-Muller Codes, Quotient Code, Quotient Reed-Muller Code, List Decoding, High Rank Variety, High-Order Fourier Analysis, Error-Correcting Codes}
}
Document
Biased Linearity Testing in the 1% Regime

Authors: Subhash Khot and Kunal Mittal

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We study linearity testing over the p-biased hypercube ({0,1}ⁿ, μ_p^{⊗n}) in the 1% regime. For a distribution ν supported over {x ∈ {0,1}^k:∑_{i=1}^k x_i = 0 (mod 2)}, with marginal distribution μ_p in each coordinate, the corresponding k-query linearity test Lin(ν) proceeds as follows: Given query access to a function f:{0,1}ⁿ → {-1,1}, sample (x_1,… ,x_k)∼ ν^{⊗n}, query f on x_1,… ,x_k, and accept if and only if ∏_{i ∈ [k]} f(x_i) = 1. Building on the work of Bhangale, Khot, and Minzer (STOC '23), we show, for 0 < p ≤ 1/2, that if k ≥ 1+1/p, then there exists a distribution ν such that the test Lin(ν) works in the 1% regime; that is, any function f:{0,1}ⁿ → {-1,1} passing the test Lin(ν) with probability ≥ 1/2+ε, for some constant ε > 0, satisfies Pr_{x∼μ_p^{⊗n}}[f(x) = g(x)] ≥ 1/2+δ, for some linear function g, and a constant δ = δ(ε) > 0. Conversely, we show that if k < 1+1/p, then no such test Lin(ν) works in the 1% regime. Our key observation is that the linearity test Lin(ν) works if and only if the distribution ν satisfies a certain pairwise independence property.

Cite as

Subhash Khot and Kunal Mittal. Biased Linearity Testing in the 1% Regime. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 10:1-10:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{khot_et_al:LIPIcs.CCC.2025.10,
  author =	{Khot, Subhash and Mittal, Kunal},
  title =	{{Biased Linearity Testing in the 1\% Regime}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{10:1--10:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.10},
  URN =		{urn:nbn:de:0030-drops-237046},
  doi =		{10.4230/LIPIcs.CCC.2025.10},
  annote =	{Keywords: Linearity test, 1\% regime, p-biased}
}
Document
Track A: Algorithms, Complexity and Games
Relative-Error Testing of Conjunctions and Decision Lists

Authors: Xi Chen, William Pires, Toniann Pitassi, and Rocco A. Servedio

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the relative-error property testing model for Boolean functions that was recently introduced in the work of [X. Chen et al., 2025]. In relative-error testing, the testing algorithm gets uniform random satisfying assignments as well as black-box queries to f, and it must accept f with high probability whenever f has the property that is being tested and reject any f that is relative-error far from having the property. Here the relative-error distance from f to a function g is measured with respect to |f^{-1}(1)| rather than with respect to the entire domain size 2ⁿ as in the Hamming distance measure that is used in the standard model; thus, unlike the standard model, relative-error testing allows us to study the testability of sparse Boolean functions that have few satisfying assignments. It was shown in [X. Chen et al., 2025] that relative-error testing is at least as difficult as standard-model property testing, but for many natural and important Boolean function classes the precise relationship between the two notions is unknown. In this paper we consider the well-studied and fundamental properties of being a conjunction and being a decision list. In the relative-error setting, we give an efficient one-sided error tester for conjunctions with running time and query complexity O(1/ε). Secondly, we give a two-sided relative-error Õ(1/ε) tester for decision lists, matching the query complexity of the state-of-the-art algorithm in the standard model [Nader H. Bshouty, 2020; I. Diakonikolas et al., 2007].

Cite as

Xi Chen, William Pires, Toniann Pitassi, and Rocco A. Servedio. Relative-Error Testing of Conjunctions and Decision Lists. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 52:1-52:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.52,
  author =	{Chen, Xi and Pires, William and Pitassi, Toniann and Servedio, Rocco A.},
  title =	{{Relative-Error Testing of Conjunctions and Decision Lists}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{52:1--52:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.52},
  URN =		{urn:nbn:de:0030-drops-234291},
  doi =		{10.4230/LIPIcs.ICALP.2025.52},
  annote =	{Keywords: Property Testing, Relative Error}
}
Document
Track A: Algorithms, Complexity and Games
A New Impossibility Result for Online Bipartite Matching Problems

Authors: Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online Bipartite Matching with random user arrival is a fundamental problem in the online advertisement ecosystem. Over the last 30 years, many algorithms and impossibility results have been developed for this problem. In particular, the latest impossibility result was established by Manshadi, Oveis Gharan and Saberi [Manshadi et al., 2011] in 2011. Since then, several algorithms have been published in an effort to narrow the gap between the upper and the lower bounds on the competitive ratio. In this paper we show that no algorithm can achieve a competitive ratio better than 1- e/(e^e) = 0.82062…, improving upon the 0.823 upper bound presented in [Manshadi et al., 2011]. Our construction is simple to state, accompanied by a fully analytic proof, and yields a competitive ratio bound intriguingly similar to 1 - 1/e, the optimal competitive ratio for the fully adversarial Online Bipartite Matching problem. Although the tightness of our upper bound remains an open question, we show that our construction is extremal in a natural class of instances.

Cite as

Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani. A New Impossibility Result for Online Bipartite Matching Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 58:1-58:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chierichetti_et_al:LIPIcs.ICALP.2025.58,
  author =	{Chierichetti, Flavio and Giacchini, Mirko and Panconesi, Alessandro and Vattani, Andrea},
  title =	{{A New Impossibility Result for Online Bipartite Matching Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{58:1--58:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.58},
  URN =		{urn:nbn:de:0030-drops-234354},
  doi =		{10.4230/LIPIcs.ICALP.2025.58},
  annote =	{Keywords: Bipartite Matching, Random Graphs, Competitive Ratio}
}
Document
Track A: Algorithms, Complexity and Games
Parameterised Holant Problems

Authors: Panagiotis Aivasiliotis, Andreas Göbel, Marc Roth, and Johannes Schmitt

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We investigate the complexity of parameterised holant problems p-Holant(𝒮) for families of symmetric signatures 𝒮. The parameterised holant framework has been introduced by Curticapean in 2015 as a counter-part to the classical and well-established theory of holographic reductions and algorithms, and it constitutes an extensive family of coloured and weighted counting constraint satisfaction problems on graph-like structures, encoding as special cases various well-studied counting problems in parameterised and fine-grained complexity theory such as counting edge-colourful k-matchings, graph-factors, Eulerian orientations or, more generally, subgraphs with weighted degree constraints. We establish an exhaustive complexity trichotomy along the set of signatures 𝒮: Depending on the signatures, p-Holant(𝒮) is either 1) solvable in "FPT-near-linear time", i.e., in time f(k)⋅ 𝒪̃(|x|), or 2) solvable in "FPT-matrix-multiplication time", i.e., in time f(k)⋅ {𝒪}(n^{ω}), where n is the number of vertices of the underlying graph, but not solvable in FPT-near-linear time, unless the Triangle Conjecture fails, or 3) #W[1]-complete and no significant improvement over the naive brute force algorithm is possible unless the Exponential Time Hypothesis fails. This classification reveals a significant and surprising gap in the complexity landscape of parameterised Holants: Not only is every instance either fixed-parameter tractable or #W[1]-complete, but additionally, every FPT instance is solvable in time (at most) f(k)⋅ {𝒪}(n^{ω}). We show that there are infinitely many instances of each of the types; for example, all constant signatures yield holant problems of type (1), and the problem of counting edge-colourful k-matchings modulo p is of type (p) for p ∈ {2,3}. Finally, we also establish a complete classification for a natural uncoloured version of parameterised holant problem p-UnColHolant(𝒮), which encodes as special cases the non-coloured analogues of the aforementioned examples. We show that the complexity of p-UnColHolant(𝒮) is different: Depending on 𝒮 all instances are either solvable in FPT-near-linear time, or #W[1]-complete, that is, there are no instances of type (2).

Cite as

Panagiotis Aivasiliotis, Andreas Göbel, Marc Roth, and Johannes Schmitt. Parameterised Holant Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aivasiliotis_et_al:LIPIcs.ICALP.2025.7,
  author =	{Aivasiliotis, Panagiotis and G\"{o}bel, Andreas and Roth, Marc and Schmitt, Johannes},
  title =	{{Parameterised Holant Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.7},
  URN =		{urn:nbn:de:0030-drops-233842},
  doi =		{10.4230/LIPIcs.ICALP.2025.7},
  annote =	{Keywords: holant problems, counting problems, parameterised algorithms, fine-grained complexity theory, homomorphisms}
}
Document
Track A: Algorithms, Complexity and Games
Sampling with a Black Box: Faster Parameterized Approximation Algorithms for Vertex Deletion Problems

Authors: Barış Can Esmer and Ariel Kulik

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this paper, we present Sampling with a Black Box, a unified framework for the design of parameterized approximation algorithms for vertex deletion problems (e.g., Vertex Cover, Feedback Vertex Set, etc.). The framework relies on two components: - A Sampling Step. A polynomial-time randomized algorithm that, given a graph G, returns a random vertex v such that the optimum of G⧵ {v} is smaller by 1 than the optimum of G, with some prescribed probability q. We show that such algorithms exist for multiple vertex deletion problems. - A Black Box algorithm which is either an exact parameterized algorithm, a polynomial-time approximation algorithm, or a parameterized-approximation algorithm. The framework combines these two components together. The sampling step is applied iteratively to remove vertices from the input graph, and then the solution is extended using the black box algorithm. The process is repeated sufficiently many times so that the target approximation ratio is attained with a constant probability. We use the technique to derive parameterized approximation algorithms for several vertex deletion problems, including Feedback Vertex Set, d-Hitting Set and 𝓁-Path Vertex Cover. In particular, for every approximation ratio 1 < β < 2, we attain a parameterized β-approximation for Feedback Vertex Set, which is faster than the parameterized β-approximation of [Jana, Lokshtanov, Mandal, Rai and Saurabh, MFCS 23']. Furthermore, our algorithms are always faster than the algorithms attained using Fidelity Preserving Transformations [Fellows, Kulik, Rosamond, and Shachnai, JCSS 18'].

Cite as

Barış Can Esmer and Ariel Kulik. Sampling with a Black Box: Faster Parameterized Approximation Algorithms for Vertex Deletion Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 39:1-39:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{canesmer_et_al:LIPIcs.ICALP.2025.39,
  author =	{Can Esmer, Bar{\i}\c{s} and Kulik, Ariel},
  title =	{{Sampling with a Black Box: Faster Parameterized Approximation Algorithms for Vertex Deletion Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{39:1--39:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.39},
  URN =		{urn:nbn:de:0030-drops-234165},
  doi =		{10.4230/LIPIcs.ICALP.2025.39},
  annote =	{Keywords: Parameterized Approximation Algorithms, Random Sampling}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Optimal Hopsets

Authors: Michael Dinitz, Ama Koranteng, and Yasamin Nazari

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a given graph G, a hopset H with hopbound β and stretch α is a set of edges such that between every pair of vertices u and v, there is a path with at most β hops in G ∪ H that approximates the distance between u and v up to a multiplicative stretch of α. Hopsets have found a wide range of applications for distance-based problems in various computational models since the 90s. More recently, there has been significant interest in understanding these fundamental objects from an existential and structural perspective. But all of this work takes a worst-case (or existential) point of view: How many edges do we need to add to satisfy a given hopbound and stretch requirement for any input graph? We initiate the study of the natural optimization variant of this problem: given a specific graph instance, what is the minimum number of edges that satisfy the hopbound and stretch requirements? We give approximation algorithms for a generalized hopset problem which, when combined with known existential bounds, lead to different approximation guarantees for various regimes depending on hopbound, stretch, and directed vs. undirected inputs. We complement our upper bounds with a lower bound that implies Label Cover hardness for directed hopsets and shortcut sets with hopbound at least 3.

Cite as

Michael Dinitz, Ama Koranteng, and Yasamin Nazari. Approximation Algorithms for Optimal Hopsets. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 69:1-69:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dinitz_et_al:LIPIcs.ICALP.2025.69,
  author =	{Dinitz, Michael and Koranteng, Ama and Nazari, Yasamin},
  title =	{{Approximation Algorithms for Optimal Hopsets}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{69:1--69:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.69},
  URN =		{urn:nbn:de:0030-drops-234464},
  doi =		{10.4230/LIPIcs.ICALP.2025.69},
  annote =	{Keywords: Hopsets, Approximation Algorithms}
}
Document
Approximating Klee’s Measure Problem and a Lower Bound for Union Volume Estimation

Authors: Karl Bringmann, Kasper Green Larsen, André Nusser, Eva Rotenberg, and Yanheng Wang

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Union volume estimation is a classical algorithmic problem. Given a family of objects O₁,…,O_n ⊂ ℝ^d, we want to approximate the volume of their union. In the special case where all objects are boxes (also called hyperrectangles) this is known as Klee’s measure problem. The state-of-the-art (1+ε)-approximation algorithm [Karp, Luby, Madras '89] for union volume estimation as well as Klee’s measure problem in constant dimension d uses a total of O(n/ε²) queries of three types: (i) determine the volume of O_i; (ii) sample a point uniformly at random from O_i; and (iii) ask whether a given point is contained in O_i. First, we show that if an algorithm learns about the objects only through these types of queries, then Ω(n/ε²) queries are necessary. In this sense, the complexity of [Karp, Luby, Madras '89] is optimal. Our lower bound holds even if the objects are equiponderous axis-aligned polygons in ℝ², if the containment query allows arbitrary (not necessarily sampled) points, and if the algorithm can spend arbitrary time and space examining the query responses. Second, we provide a more efficient approximation algorithm for Klee’s measure problem, which improves the running time from O(n/ε²) to O((n+1/ε²) ⋅ log^{O(d)} (n)). We circumvent our lower bound by exploiting the geometry of boxes in various ways: (1) We sort the boxes into classes of similar shapes after inspecting their corner coordinates. (2) With orthogonal range searching, we show how to sample points from the union of boxes in each class, and how to merge samples from different classes. (3) We bound the amount of wasted work by arguing that most pairs of classes have a small intersection.

Cite as

Karl Bringmann, Kasper Green Larsen, André Nusser, Eva Rotenberg, and Yanheng Wang. Approximating Klee’s Measure Problem and a Lower Bound for Union Volume Estimation. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 25:1-25:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.SoCG.2025.25,
  author =	{Bringmann, Karl and Larsen, Kasper Green and Nusser, Andr\'{e} and Rotenberg, Eva and Wang, Yanheng},
  title =	{{Approximating Klee’s Measure Problem and a Lower Bound for Union Volume Estimation}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{25:1--25:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.25},
  URN =		{urn:nbn:de:0030-drops-231778},
  doi =		{10.4230/LIPIcs.SoCG.2025.25},
  annote =	{Keywords: approximation, volume of union, union of objects, query complexity}
}
Document
Online Versus Offline Adversaries in Property Testing

Authors: Esty Kelman, Ephraim Linder, and Sofya Raskhodnikova

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study property testing with incomplete or noisy inputs. The models we consider allow for adversarial manipulation of the input, but differ in whether the manipulation can be done only offline, i.e., before the execution of the algorithm, or online, i.e., as the algorithm runs. The manipulations by an adversary can come in the form of erasures or corruptions. We compare the query complexity and the randomness complexity of property testing in the offline and online models. Kalemaj, Raskhodnikova, and Varma (Theory Comput. `23) provide properties that can be tested with a small number of queries with offline erasures, but cannot be tested at all with online erasures. We demonstrate that the two models are incomparable in terms of query complexity: we construct properties that can be tested with a constant number of queries in the online corruption model, but require querying a significant fraction of the input in the offline erasure model. We also construct properties that exhibit a strong separation between the randomness complexity of testing in the presence of offline and online adversaries: testing these properties in the online model requires exponentially more random bits than in the offline model, even when they are tested with nearly the same number of queries in both models. Our randomness separation relies on a novel reduction from randomness-efficient testers in the adversarial online model to query-efficient testers in the standard model.

Cite as

Esty Kelman, Ephraim Linder, and Sofya Raskhodnikova. Online Versus Offline Adversaries in Property Testing. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 65:1-65:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kelman_et_al:LIPIcs.ITCS.2025.65,
  author =	{Kelman, Esty and Linder, Ephraim and Raskhodnikova, Sofya},
  title =	{{Online Versus Offline Adversaries in Property Testing}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{65:1--65:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.65},
  URN =		{urn:nbn:de:0030-drops-226933},
  doi =		{10.4230/LIPIcs.ITCS.2025.65},
  annote =	{Keywords: Property Testing, Online Adversary, Offline Adversary, Query Complexity, Randomness Complexity, Separations}
}
  • Refine by Type
  • 29 Document/PDF
  • 19 Document/HTML

  • Refine by Publication Year
  • 19 2025
  • 2 2024
  • 2 2020
  • 1 2018
  • 1 2017
  • Show More...

  • Refine by Author
  • 8 Bhattacharyya, Arnab
  • 3 Ghoshal, Suprovat
  • 3 Kelman, Esty
  • 2 Gopi, Sivakanth
  • 2 Raskhodnikova, Sofya
  • Show More...

  • Refine by Series/Journal
  • 29 LIPIcs

  • Refine by Classification
  • 8 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 3 Theory of computation → Error-correcting codes
  • 3 Theory of computation → Parameterized complexity and exact algorithms
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Computational complexity and cryptography
  • Show More...

  • Refine by Keyword
  • 4 Property Testing
  • 3 property testing
  • 2 Linearity testing
  • 2 Locally correctable code
  • 1 1% regime
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail