9 Search Results for "Chaudhury, Bhaskar Ray"


Document
Hardness of Median and Center in the Ulam Metric

Authors: Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.

Cite as

Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.. Hardness of Median and Center in the Ulam Metric. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 111:1-111:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111,
  author =	{Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.},
  title =	{{Hardness of Median and Center in the Ulam Metric}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{111:1--111:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111},
  URN =		{urn:nbn:de:0030-drops-245809},
  doi =		{10.4230/LIPIcs.ESA.2025.111},
  annote =	{Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity}
}
Document
Linear Time Subsequence and Supersequence Regex Matching

Authors: Antoine Amarilli, Florin Manea, Tina Ringleb, and Markus L. Schmid

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
It is well-known that checking whether a given string w matches a given regular expression r can be done in quadratic time O(|w|⋅ |r|) and that this cannot be improved to a truly subquadratic running time of O((|w|⋅ |r|)^{1-ε}) assuming the strong exponential time hypothesis (SETH). We study a different matching paradigm where we ask instead whether w has a subsequence that matches r, and show that regex matching in this sense can be solved in linear time O(|w| + |r|). Further, the same holds if we ask for a supersequence. We show that the quantitative variants where we want to compute a longest or shortest subsequence or supersequence of w that matches r can be solved in O(|w|⋅ |r|), i. e., asymptotically no worse than classical regex matching; and we show that O(|w| + |r|) is conditionally not possible for these problems. We also investigate these questions with respect to other natural string relations like the infix, prefix, left-extension or extension relation instead of the subsequence and supersequence relation. We further study the complexity of the universal problem where we ask if all subsequences (or supersequences, infixes, prefixes, left-extensions or extensions) of an input string satisfy a given regular expression.

Cite as

Antoine Amarilli, Florin Manea, Tina Ringleb, and Markus L. Schmid. Linear Time Subsequence and Supersequence Regex Matching. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amarilli_et_al:LIPIcs.MFCS.2025.9,
  author =	{Amarilli, Antoine and Manea, Florin and Ringleb, Tina and Schmid, Markus L.},
  title =	{{Linear Time Subsequence and Supersequence Regex Matching}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.9},
  URN =		{urn:nbn:de:0030-drops-241162},
  doi =		{10.4230/LIPIcs.MFCS.2025.9},
  annote =	{Keywords: subsequence, supersequence, regular language, regular expression, automata}
}
Document
Track A: Algorithms, Complexity and Games
Faster Fréchet Distance Under Transformations

Authors: Kevin Buchin, Maike Buchin, Zijin Huang, André Nusser, and Sampson Wong

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the problem of computing the Fréchet distance between two polygonal curves under transformations. First, we consider translations in the Euclidean plane. Given two curves π and σ of total complexity n and a threshold δ ≥ 0, we present an 𝒪̃(n^{7 + 1/3}) time algorithm to determine whether there exists a translation t ∈ ℝ² such that the Fréchet distance between π and σ + t is at most δ. This improves on the previous best result, which is an 𝒪(n⁸) time algorithm. We then generalize this result to any class of rationally parameterized transformations, which includes translation, rotation, scaling, and arbitrary affine transformations. For a class T of rationally parametrized transformations with k degrees of freedom, we show that one can determine whether there is a transformation τ ∈ T such that the Fréchet distance between π and τ(σ) is at most δ in 𝒪̃(n^{3k+4/3}) time.

Cite as

Kevin Buchin, Maike Buchin, Zijin Huang, André Nusser, and Sampson Wong. Faster Fréchet Distance Under Transformations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ICALP.2025.36,
  author =	{Buchin, Kevin and Buchin, Maike and Huang, Zijin and Nusser, Andr\'{e} and Wong, Sampson},
  title =	{{Faster Fr\'{e}chet Distance Under Transformations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.36},
  URN =		{urn:nbn:de:0030-drops-234137},
  doi =		{10.4230/LIPIcs.ICALP.2025.36},
  annote =	{Keywords: Fr\'{e}chet distance, curve similarity, shape matching}
}
Document
Track A: Algorithms, Complexity and Games
The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization

Authors: Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the online allocation of divisible items to n agents with additive valuations for p-mean welfare maximization, a problem introduced by Barman, Khan, and Maiti (2022). Our algorithmic and hardness results characterize the optimal competitive ratios for the entire spectrum of -∞ ≤ p ≤ 1. Surprisingly, our improved algorithms for all p ≤ (1)/(log n) are simply the greedy algorithm for the Nash welfare, supplemented with two auxiliary components to ensure all agents have non-zero utilities and to help a small number of agents with low utilities. In this sense, the long arm of Nashian allocation achieves near-optimal competitive ratios not only for Nash welfare but also all the way to egalitarian welfare.

Cite as

Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang. The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 98:1-98:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ICALP.2025.98,
  author =	{Huang, Zhiyi and Lee, Chui Shan and Shu, Xinkai and Wang, Zhaozi},
  title =	{{The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{98:1--98:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.98},
  URN =		{urn:nbn:de:0030-drops-234754},
  doi =		{10.4230/LIPIcs.ICALP.2025.98},
  annote =	{Keywords: Online Algorithms, Fair Division, Nash Welfare}
}
Document
On the Existence of Competitive Equilibrium with Chores

Authors: Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We study the chore division problem in the classic Arrow-Debreu exchange setting, where a set of agents want to divide their divisible chores (bads) to minimize their disutilities (costs). We assume that agents have linear disutility functions. Like the setting with goods, a division based on competitive equilibrium is regarded as one of the best mechanisms for bads. Equilibrium existence for goods has been extensively studied, resulting in a simple, polynomial-time verifiable, necessary and sufficient condition. However, dividing bads has not received a similar extensive study even though it is as relevant as dividing goods in day-to-day life. In this paper, we show that the problem of checking whether an equilibrium exists in chore division is NP-complete, which is in sharp contrast to the case of goods. Further, we derive a simple, polynomial-time verifiable, sufficient condition for existence. Our fixed-point formulation to show existence makes novel use of both Kakutani and Brouwer fixed-point theorems, the latter nested inside the former, to avoid the undefined demand issue specific to bads.

Cite as

Bhaskar Ray Chaudhury, Jugal Garg, Peter McGlaughlin, and Ruta Mehta. On the Existence of Competitive Equilibrium with Chores. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 41:1-41:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chaudhury_et_al:LIPIcs.ITCS.2022.41,
  author =	{Chaudhury, Bhaskar Ray and Garg, Jugal and McGlaughlin, Peter and Mehta, Ruta},
  title =	{{On the Existence of Competitive Equilibrium with Chores}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{41:1--41:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.41},
  URN =		{urn:nbn:de:0030-drops-156378},
  doi =		{10.4230/LIPIcs.ITCS.2022.41},
  annote =	{Keywords: Fair Division, Competitive Equilibrium, Fixed Point Theorems}
}
Document
Polyline Simplification has Cubic Complexity

Authors: Karl Bringmann and Bhaskar Ray Chaudhury

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
In the classic polyline simplification problem we want to replace a given polygonal curve P, consisting of n vertices, by a subsequence P' of k vertices from P such that the polygonal curves P and P' are "close". Closeness is usually measured using the Hausdorff or Fréchet distance. These distance measures can be applied globally, i.e., to the whole curves P and P', or locally, i.e., to each simplified subcurve and the line segment that it was replaced with separately (and then taking the maximum). We provide an O(n^3) time algorithm for simplification under Global-Fréchet distance, improving the previous best algorithm by a factor of Omega(kn^2). We also provide evidence that in high dimensions cubic time is essentially optimal for all three problems (Local-Hausdorff, Local-Fréchet, and Global-Fréchet). Specifically, improving the cubic time to O(n^{3-epsilon} poly(d)) for polyline simplification over (R^d,L_p) for p = 1 would violate plausible conjectures. We obtain similar results for all p in [1,infty), p != 2. In total, in high dimensions and over general L_p-norms we resolve the complexity of polyline simplification with respect to Local-Hausdorff, Local-Fréchet, and Global-Fréchet, by providing new algorithms and conditional lower bounds.

Cite as

Karl Bringmann and Bhaskar Ray Chaudhury. Polyline Simplification has Cubic Complexity. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.SoCG.2019.18,
  author =	{Bringmann, Karl and Chaudhury, Bhaskar Ray},
  title =	{{Polyline Simplification has Cubic Complexity}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.18},
  URN =		{urn:nbn:de:0030-drops-104224},
  doi =		{10.4230/LIPIcs.SoCG.2019.18},
  annote =	{Keywords: Polyline simplification, Fr\'{e}chet distance, Hausdorff distance, Conditional lower bounds}
}
Document
On Fair Division for Indivisible Items

Authors: Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
We consider the task of assigning indivisible goods to a set of agents in a fair manner. Our notion of fairness is Nash social welfare, i.e., the goal is to maximize the geometric mean of the utilities of the agents. Each good comes in multiple items or copies, and the utility of an agent diminishes as it receives more items of the same good. The utility of a bundle of items for an agent is the sum of the utilities of the items in the bundle. Each agent has a utility cap beyond which he does not value additional items. We give a polynomial time approximation algorithm that maximizes Nash social welfare up to a factor of e^{1/{e}} ~~ 1.445. The computed allocation is Pareto-optimal and approximates envy-freeness up to one item up to a factor of 2 + epsilon.

Cite as

Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg, Martin Hoefer, and Kurt Mehlhorn. On Fair Division for Indivisible Items. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chaudhury_et_al:LIPIcs.FSTTCS.2018.25,
  author =	{Chaudhury, Bhaskar Ray and Cheung, Yun Kuen and Garg, Jugal and Garg, Naveen and Hoefer, Martin and Mehlhorn, Kurt},
  title =	{{On Fair Division for Indivisible Items}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.25},
  URN =		{urn:nbn:de:0030-drops-99242},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.25},
  annote =	{Keywords: Fair Division, Indivisible Goods, Envy-Free}
}
Document
Combinatorial Algorithms for General Linear Arrow-Debreu Markets

Authors: Bhaskar Ray Chaudhury and Kurt Mehlhorn

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
We present a combinatorial algorithm for determining the market clearing prices of a general linear Arrow-Debreu market, where every agent can own multiple goods. The existing combinatorial algorithms for linear Arrow-Debreu markets consider the case where each agent can own all of one good only. We present an O~((n+m)^7 log^3(UW)) algorithm where n, m, U and W refer to the number of agents, the number of goods, the maximal integral utility and the maximum quantity of any good in the market respectively. The algorithm refines the iterative algorithm of Duan, Garg and Mehlhorn using several new ideas. We also identify the hard instances for existing combinatorial algorithms for linear Arrow-Debreu markets. In particular we find instances where the ratio of the maximum to the minimum equilibrium price of a good is U^{Omega(n)} and the number of iterations required by the existing iterative combinatorial algorithms of Duan, and Mehlhorn and Duan, Garg, and Mehlhorn are high. Our instances also separate the two algorithms.

Cite as

Bhaskar Ray Chaudhury and Kurt Mehlhorn. Combinatorial Algorithms for General Linear Arrow-Debreu Markets. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 26:1-26:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chaudhury_et_al:LIPIcs.FSTTCS.2018.26,
  author =	{Chaudhury, Bhaskar Ray and Mehlhorn, Kurt},
  title =	{{Combinatorial Algorithms for General Linear Arrow-Debreu Markets}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{26:1--26:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.26},
  URN =		{urn:nbn:de:0030-drops-99255},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.26},
  annote =	{Keywords: Linear Exchange Markets, Equilibrium, Combinatorial Algorithms}
}
Document
Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

Authors: Karl Bringmann and Bhaskar Ray Chaudhury

Published in: LIPIcs, Volume 122, 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)


Abstract
We study sketching and streaming algorithms for the Longest Common Subsequence problem (LCS) on strings of small alphabet size |Sigma|. For the problem of deciding whether the LCS of strings x,y has length at least L, we obtain a sketch size and streaming space usage of O(L^{|Sigma| - 1} log L). We also prove matching unconditional lower bounds. As an application, we study a variant of LCS where each alphabet symbol is equipped with a weight that is given as input, and the task is to compute a common subsequence of maximum total weight. Using our sketching algorithm, we obtain an O(min{nm, n + m^{|Sigma|}})-time algorithm for this problem, on strings x,y of length n,m, with n >= m. We prove optimality of this running time up to lower order factors, assuming the Strong Exponential Time Hypothesis.

Cite as

Karl Bringmann and Bhaskar Ray Chaudhury. Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS. In 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 122, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bringmann_et_al:LIPIcs.FSTTCS.2018.40,
  author =	{Bringmann, Karl and Chaudhury, Bhaskar Ray},
  title =	{{Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS}},
  booktitle =	{38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2018)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-093-4},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{122},
  editor =	{Ganguly, Sumit and Pandya, Paritosh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2018.40},
  URN =		{urn:nbn:de:0030-drops-99390},
  doi =		{10.4230/LIPIcs.FSTTCS.2018.40},
  annote =	{Keywords: algorithms, SETH, communication complexity, run-length encoding}
}
  • Refine by Type
  • 9 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 1 2022
  • 1 2019
  • 3 2018

  • Refine by Author
  • 5 Chaudhury, Bhaskar Ray
  • 2 Bringmann, Karl
  • 2 Garg, Jugal
  • 2 Mehlhorn, Kurt
  • 1 Amarilli, Antoine
  • Show More...

  • Refine by Series/Journal
  • 9 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Mathematical optimization
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Mathematics of computing → Permutations and combinations
  • 1 Theory of computation
  • Show More...

  • Refine by Keyword
  • 3 Fair Division
  • 2 Fréchet distance
  • 1 Combinatorial Algorithms
  • 1 Competitive Equilibrium
  • 1 Conditional lower bounds
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail