12 Search Results for "Funke, Florian"


Document
Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Authors: Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive multilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear time multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs by repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allowing refinement of the partition over multiple levels with increasing detail. At the same time, we use edge sparsification to guarantee geometric size reduction between the levels and thus linear running time. We provide a proof of the linear running time as well as additional insights into the behavior of multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-case running time. We evaluate multiple approaches for edge sparsification and integrate our algorithm into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent parallel scalability. As demonstrated in detailed experiments, this results in a 1.49× average speedup (up to 4× for some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly outperforms state-of-the-art single-level and streaming approaches.

Cite as

Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier. Linear-Time Multilevel Graph Partitioning via Edge Sparsification. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2025.32,
  author =	{Gottesb\"{u}ren, Lars and Maas, Nikolai and Rosch, Dominik and Sanders, Peter and Seemaier, Daniel},
  title =	{{Linear-Time Multilevel Graph Partitioning via Edge Sparsification}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.32},
  URN =		{urn:nbn:de:0030-drops-245007},
  doi =		{10.4230/LIPIcs.ESA.2025.32},
  annote =	{Keywords: Graph Partitioning, Graph Algorithms, Linear Time Algorithms, Graph Sparsification}
}
Document
Building Trustworthy Cognitive Monitoring for Safety-Critical Human Tasks: A Phased Methodological Approach

Authors: Maciej Grzeszczuk, Grzegorz Pochwatko, Barbara Karpowicz, Stanisław Knapiński, and Wiesław Kopeć

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Operators performing high-stakes, safety-critical tasks - such as air traffic controllers, surgeons, or mission control personnel - must maintain exceptional cognitive performance under variable and often stressful conditions. This paper presents a phased methodological approach to building cognitive monitoring systems for such environments. By integrating insights from human factors research, simulation-based training, sensor technologies, and fundamental psychological principles, the proposed framework supports real-time performance assessment with minimum intrusion. The approach begins with simplified simulations and evolves towards operational contexts. Key challenges addressed include variability in workload, the effects of fatigue and stress, thus the need for adaptive monitoring for early warning support mechanisms. The methodology aims to improve situational awareness, reduce human error, and support decision-making without undermining operator autonomy. Ultimately, the work contributes to the development of resilient and transparent systems in domains where human performance is critical to safety.

Cite as

Maciej Grzeszczuk, Grzegorz Pochwatko, Barbara Karpowicz, Stanisław Knapiński, and Wiesław Kopeć. Building Trustworthy Cognitive Monitoring for Safety-Critical Human Tasks: A Phased Methodological Approach. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 11:1-11:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grzeszczuk_et_al:OASIcs.SpaceCHI.2025.11,
  author =	{Grzeszczuk, Maciej and Pochwatko, Grzegorz and Karpowicz, Barbara and Knapi\'{n}ski, Stanis{\l}aw and Kope\'{c}, Wies{\l}aw},
  title =	{{Building Trustworthy Cognitive Monitoring for Safety-Critical Human Tasks: A Phased Methodological Approach}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{11:1--11:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.11},
  URN =		{urn:nbn:de:0030-drops-240013},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.11},
  annote =	{Keywords: cognitive load, safety-critical systems, human performance, simulation environments, human factors, air traffic control, aviation}
}
Document
Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space

Authors: Eike Neumann

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the problem of deciding whether a point escapes a closed subset of ℝ^d under the iteration of a continuous map f : ℝ^d → ℝ^d in the bit-model of real computation. We give a sound partial decision method for this problem which is complete in the sense that its halting set contains the halting set of all sound partial decision methods for the problem. Equivalently, our decision method terminates on all problem instances whose answer is robust under all sufficiently small perturbations of the function. We further show that the halting set of our algorithm is dense in the set of all problem instances. While our algorithm applies to general continuous functions, we demonstrate that it also yields complete decision methods for much more rigid function families: affine linear systems and quadratic complex polynomials. In the latter case, completeness is subject to the density of hyperbolicity conjecture in complex dynamics. This in particular yields an alternative proof of Hertling’s (2004) conditional answer to a question raised by Penrose (1989) regarding the computability of the Mandelbrot set.

Cite as

Eike Neumann. Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{neumann:LIPIcs.MFCS.2025.79,
  author =	{Neumann, Eike},
  title =	{{Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.79},
  URN =		{urn:nbn:de:0030-drops-241866},
  doi =		{10.4230/LIPIcs.MFCS.2025.79},
  annote =	{Keywords: Dynamical Systems, Computability in Analysis, Non-Linear Functions}
}
Document
On Expansions of Monadic Second-Order Logic with Dynamical Predicates

Authors: Joris Nieuwveld and Joël Ouaknine

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Expansions of the monadic second-order (MSO) theory of the structure ⟨ℕ;<⟩ have been a fertile and active area of research ever since the publication of the seminal papers of Büchi and Elgot & Rabin on the subject in the 1960s. In the present paper, we establish decidability of the MSO theory of ⟨ℕ;<,P⟩, where P ranges over a large class of unary "dynamical" predicates, i.e., sets of non-negative values assumed by certain integer linear recurrence sequences. One of our key technical tools is the novel concept of (effective) prodisjunctivity, which we expect may also find independent applications further afield.

Cite as

Joris Nieuwveld and Joël Ouaknine. On Expansions of Monadic Second-Order Logic with Dynamical Predicates. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 80:1-80:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nieuwveld_et_al:LIPIcs.MFCS.2025.80,
  author =	{Nieuwveld, Joris and Ouaknine, Jo\"{e}l},
  title =	{{On Expansions of Monadic Second-Order Logic with Dynamical Predicates}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{80:1--80:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.80},
  URN =		{urn:nbn:de:0030-drops-241879},
  doi =		{10.4230/LIPIcs.MFCS.2025.80},
  annote =	{Keywords: Monadic second-order logic, linear recurrence sequences, decidability, Baker’s theorem}
}
Document
Resolving Nondeterminism by Chance

Authors: Soumyajit Paul, David Purser, Sven Schewe, Qiyi Tang, Patrick Totzke, and Di-De Yen

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
History-deterministic automata are those in which nondeterministic choices can be correctly resolved stepwise: there is a strategy to select a continuation of a run given the next input letter so that if the overall input word admits some accepting run, then the constructed run is also accepting. Motivated by checking qualitative properties in probabilistic verification, we consider the setting where the resolver strategy can randomise and only needs to succeed with lower-bounded probability. We study the expressiveness of such stochastically-resolvable automata as well as consider the decision questions of whether a given automaton has this property. In particular, we show that it is undecidable to check if a given NFA is λ-stochastically resolvable. This problem is decidable for finitely-ambiguous automata. We also present complexity upper and lower bounds for several well-studied classes of automata for which this problem remains decidable.

Cite as

Soumyajit Paul, David Purser, Sven Schewe, Qiyi Tang, Patrick Totzke, and Di-De Yen. Resolving Nondeterminism by Chance. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.CONCUR.2025.32,
  author =	{Paul, Soumyajit and Purser, David and Schewe, Sven and Tang, Qiyi and Totzke, Patrick and Yen, Di-De},
  title =	{{Resolving Nondeterminism by Chance}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.32},
  URN =		{urn:nbn:de:0030-drops-239822},
  doi =		{10.4230/LIPIcs.CONCUR.2025.32},
  annote =	{Keywords: History-determinism, finite automata, probabilistic automata}
}
Document
CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

Authors: Adil Chhabra, Shai Dorian Peretz, and Christian Schulz

Published in: LIPIcs, Volume 338, 23rd International Symposium on Experimental Algorithms (SEA 2025)


Abstract
We present CluStRE, a novel streaming graph clustering algorithm that balances computational efficiency with high-quality clustering using multi-stage refinement. Unlike traditional in-memory clustering approaches, CluStRE processes graphs in a streaming setting, significantly reducing memory overhead while leveraging re-streaming and evolutionary heuristics to improve solution quality. Our method dynamically constructs a quotient graph, enabling modularity-based optimization while efficiently handling large-scale graphs. We introduce multiple configurations of CluStRE to provide trade-offs between speed, memory consumption, and clustering quality. Experimental evaluations demonstrate that CluStRE improves solution quality by 89.8%, operates 2.6× faster, and uses less than two-thirds of the memory required by the state-of-the-art streaming clustering algorithm on average. Moreover, our strongest mode enhances solution quality by up to 150% on average. With this, CluStRE achieves comparable solution quality to in-memory algorithms, i.e. over 96% of the quality of clustering approaches, including Louvain, effectively bridging the gap between streaming and traditional clustering methods.

Cite as

Adil Chhabra, Shai Dorian Peretz, and Christian Schulz. CluStRE: Streaming Graph Clustering with Multi-Stage Refinement. In 23rd International Symposium on Experimental Algorithms (SEA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 338, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2025.11,
  author =	{Chhabra, Adil and Dorian Peretz, Shai and Schulz, Christian},
  title =	{{CluStRE: Streaming Graph Clustering with Multi-Stage Refinement}},
  booktitle =	{23rd International Symposium on Experimental Algorithms (SEA 2025)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-375-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{338},
  editor =	{Mutzel, Petra and Prezza, Nicola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2025.11},
  URN =		{urn:nbn:de:0030-drops-232493},
  doi =		{10.4230/LIPIcs.SEA.2025.11},
  annote =	{Keywords: graph clustering, community, streaming, online, memetic, evolutionary}
}
Document
Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states). We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property. Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10},
  URN =		{urn:nbn:de:0030-drops-170732},
  doi =		{10.4230/LIPIcs.CONCUR.2022.10},
  annote =	{Keywords: Model checking, parametric Markov chains, distribution transformer semantics}
}
Document
An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions

Authors: Florian Barth, Stefan Funke, and Claudius Proissl

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Graphs with multiple edge costs arise naturally in the route planning domain when apart from travel time other criteria like fuel consumption or positive height difference are also objectives to be minimized. In such a scenario, this paper investigates the number of extreme shortest paths between a given source-target pair s, t. We show that for a fixed but arbitrary number of cost types d ≥ 1 the number of extreme shortest paths is in n^O(log^{d-1}n) in graphs G with n nodes. This is a generalization of known upper bounds for d = 2 and d = 3.

Cite as

Florian Barth, Stefan Funke, and Claudius Proissl. An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{barth_et_al:LIPIcs.ESA.2022.14,
  author =	{Barth, Florian and Funke, Stefan and Proissl, Claudius},
  title =	{{An Upper Bound on the Number of Extreme Shortest Paths in Arbitrary Dimensions}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.14},
  URN =		{urn:nbn:de:0030-drops-169525},
  doi =		{10.4230/LIPIcs.ESA.2022.14},
  annote =	{Keywords: Parametric Shortest Paths, Extreme Shortest Paths}
}
Document
Preference-Based Trajectory Clustering - An Application of Geometric Hitting Sets

Authors: Florian Barth, Stefan Funke, and Claudius Proissl

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
In a road network with multicriteria edge costs we consider the problem of computing a minimum number of driving preferences such that a given set of paths/trajectories is optimal under at least one of these preferences. While the exact formulation and solution of this problem appears theoretically hard, we show that in practice one can solve the problem exactly even for non-homeopathic instance sizes of several thousand trajectories in a road network of several million nodes. We also present a parameterized guaranteed-polynomial-time scheme with very good practical performance.

Cite as

Florian Barth, Stefan Funke, and Claudius Proissl. Preference-Based Trajectory Clustering - An Application of Geometric Hitting Sets. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{barth_et_al:LIPIcs.ISAAC.2021.15,
  author =	{Barth, Florian and Funke, Stefan and Proissl, Claudius},
  title =	{{Preference-Based Trajectory Clustering - An Application of Geometric Hitting Sets}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{15:1--15:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.15},
  URN =		{urn:nbn:de:0030-drops-154481},
  doi =		{10.4230/LIPIcs.ISAAC.2021.15},
  annote =	{Keywords: Route planning, personalization, computational geometry}
}
Document
The Orbit Problem for Parametric Linear Dynamical Systems

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{The Orbit Problem for Parametric Linear Dynamical Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28},
  URN =		{urn:nbn:de:0030-drops-144053},
  doi =		{10.4230/LIPIcs.CONCUR.2021.28},
  annote =	{Keywords: Orbit problem, parametric, linear dynamical systems}
}
Document
Invited Talk
From Verification to Causality-Based Explications (Invited Talk)

Authors: Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
In view of the growing complexity of modern software architectures, formal models are increasingly used to understand why a system works the way it does, opposed to simply verifying that it behaves as intended. This paper surveys approaches to formally explicate the observable behavior of reactive systems. We describe how Halpern and Pearl’s notion of actual causation inspired verification-oriented studies of cause-effect relationships in the evolution of a system. A second focus lies on applications of the Shapley value to responsibility ascriptions, aimed to measure the influence of an event on an observable effect. Finally, formal approaches to probabilistic causation are collected and connected, and their relevance to the understanding of probabilistic systems is discussed.

Cite as

Christel Baier, Clemens Dubslaff, Florian Funke, Simon Jantsch, Rupak Majumdar, Jakob Piribauer, and Robin Ziemek. From Verification to Causality-Based Explications (Invited Talk). In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.ICALP.2021.1,
  author =	{Baier, Christel and Dubslaff, Clemens and Funke, Florian and Jantsch, Simon and Majumdar, Rupak and Piribauer, Jakob and Ziemek, Robin},
  title =	{{From Verification to Causality-Based Explications}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.1},
  URN =		{urn:nbn:de:0030-drops-140709},
  doi =		{10.4230/LIPIcs.ICALP.2021.1},
  annote =	{Keywords: Model Checking, Causality, Responsibility, Counterfactuals, Shapley value}
}
Document
Reachability in Dynamical Systems with Rounding

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We consider reachability in dynamical systems with discrete linear updates, but with fixed digital precision, i.e., such that values of the system are rounded at each step. Given a matrix M ∈ ℚ^{d × d}, an initial vector x ∈ ℚ^{d}, a granularity g ∈ ℚ_+ and a rounding operation [⋅] projecting a vector of ℚ^{d} onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the orbit 𝒪 = ⟨[x], [M[x]],[M[M[x]]],… ⟩, i.e., the trajectory of a linear dynamical system in which the state is rounded after each step. For arbitrary rounding functions with bounded effect, we show that the complexity of deciding point-to-point reachability - whether a given target y ∈ ℚ^{d} belongs to 𝒪 - is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one). We also establish decidability without any restrictions on eigenvalues for several natural classes of rounding functions.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland. Reachability in Dynamical Systems with Rounding. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.FSTTCS.2020.36,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Pouly, Amaury and Purser, David and Whiteland, Markus A.},
  title =	{{Reachability in Dynamical Systems with Rounding}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.36},
  URN =		{urn:nbn:de:0030-drops-132778},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.36},
  annote =	{Keywords: dynamical systems, rounding, reachability}
}
  • Refine by Type
  • 12 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 2 2022
  • 3 2021
  • 1 2020

  • Refine by Author
  • 4 Baier, Christel
  • 4 Funke, Florian
  • 4 Jantsch, Simon
  • 4 Ouaknine, Joël
  • 4 Purser, David
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 4 Theory of computation → Logic and verification
  • 2 Theory of computation
  • 2 Theory of computation → Formal languages and automata theory
  • 1 Applied computing → Computer-assisted instruction
  • 1 Computing methodologies → Model development and analysis
  • Show More...

  • Refine by Keyword
  • 1 Baker’s theorem
  • 1 Causality
  • 1 Computability in Analysis
  • 1 Counterfactuals
  • 1 Dynamical Systems
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail