17 Search Results for "Gupta, Chetan"


Document
Quantum Catalytic Space

Authors: Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Space complexity is a key field of study in theoretical computer science. In the quantum setting there are clear motivations to understand the power of space-restricted computation, as qubits are an especially precious and limited resource. Recently, a new branch of space-bounded complexity called catalytic computing has shown that reusing space is a very powerful computational resource, especially for subroutines that incur little to no space overhead. While quantum catalysis in an information theoretic context, and the power of "dirty" qubits for quantum computation, has been studied over the years, these models are generally not suitable for use in quantum space-bounded algorithms, as they either rely on specific catalytic states or destroy the memory being borrowed. We define the notion of catalytic computing in the quantum setting and show a number of initial results about the model. First, we show that quantum catalytic logspace can always be computed quantumly in polynomial time; the classical analogue of this is the largest open question in catalytic computing. This also allows quantum catalytic space to be defined in an equivalent way with respect to circuits instead of Turing machines. We also prove that quantum catalytic logspace can simulate log-depth threshold circuits, a class which is known to contain (and believed to strictly contain) quantum logspace, thus showcasing the power of quantum catalytic space. Finally we show that both unitary quantum catalytic logspace and classical catalytic logspace can be simulated in the one-clean qubit model.

Cite as

Harry Buhrman, Marten Folkertsma, Ian Mertz, Florian Speelman, Sergii Strelchuk, Sathyawageeswar Subramanian, and Quinten Tupker. Quantum Catalytic Space. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 11:1-11:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buhrman_et_al:LIPIcs.TQC.2025.11,
  author =	{Buhrman, Harry and Folkertsma, Marten and Mertz, Ian and Speelman, Florian and Strelchuk, Sergii and Subramanian, Sathyawageeswar and Tupker, Quinten},
  title =	{{Quantum Catalytic Space}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{11:1--11:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.11},
  URN =		{urn:nbn:de:0030-drops-240606},
  doi =		{10.4230/LIPIcs.TQC.2025.11},
  annote =	{Keywords: quantum computing, quantum complexity, space-bounded algorithms, catalytic computation, one clean qubit}
}
Document
Catalytic Computing and Register Programs Beyond Log-Depth

Authors: Yaroslav Alekseev, Yuval Filmus, Ian Mertz, Alexander Smal, and Antoine Vinciguerra

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In a seminal work, Buhrman et al. (STOC 2014) defined the class CSPACE(s,c) of problems solvable in space s with an additional catalytic tape of size c, which is a tape whose initial content must be restored at the end of the computation. They showed that uniform TC¹ circuits are computable in catalytic logspace, i.e., CL = CSPACE(O(log{n}), 2^{O(log{n})}), thus giving strong evidence that catalytic space gives L strict additional power. Their study focuses on an arithmetic model called register programs, which has been a focal point in development since then. Understanding CL remains a major open problem, as TC¹ remains the most powerful containment to date. In this work, we study the power of catalytic space and register programs to compute circuits of larger depth. Using register programs, we show that for every ε > 0, SAC² ⊆ CSPACE (O((log²n)/(log log n)), 2^{O(log^{1+ε} n)}) . On the other hand, we know that SAC² ⊆ TC² ⊆ CSPACE(O(log²{n}) , 2^{O(log{n})}). Our result thus shows an O(log log n) factor improvement on the free space needed to compute SAC², at the expense of a nearly-polynomial-sized catalytic tape. We also exhibit non-trivial register programs for matrix powering, which is a further step towards showing NC² ⊆ CL.

Cite as

Yaroslav Alekseev, Yuval Filmus, Ian Mertz, Alexander Smal, and Antoine Vinciguerra. Catalytic Computing and Register Programs Beyond Log-Depth. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.MFCS.2025.6,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Mertz, Ian and Smal, Alexander and Vinciguerra, Antoine},
  title =	{{Catalytic Computing and Register Programs Beyond Log-Depth}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.6},
  URN =		{urn:nbn:de:0030-drops-241136},
  doi =		{10.4230/LIPIcs.MFCS.2025.6},
  annote =	{Keywords: catalytic computing, circuit classes, polynomial method}
}
Document
Real-Time System Evaluation Techniques: A Systematic Mapping Study

Authors: Tilmann L. Unte and Sebastian Altmeyer

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
A systematic mapping study assesses a broad selection of research publications with the aim of categorizing them according to a research question. We present the first systematic mapping study on evaluation practices within the field of real-time systems, by analyzing publications from the top three conferences ECRTS, RTAS, and RTSS from 2017 until 2024. Our study provides a comprehensive view on the evaluation practices prevalent in our community, including benchmark software, task set and graph generators, case studies, industrial challenges, and custom solutions. Based on our study, we construct and publish a dataset enabling quantitative analysis of evaluation practices within the real-time systems community. Our analysis indicates shortcomings in current practice: custom case studies are abundant, while industrial challenges have very minor impact. Reproducibility has only been shown for a small subset of evaluations and there is no indication of change. Adoption of new and improved tools and benchmarks is very slow or even non-existent. Evaluation must not be viewed as an obligation when publishing a paper, but as a key element in ensuring practicability, comparability, and reproducibility. Based on our study, we conclude that our community currently falls short on these objectives.

Cite as

Tilmann L. Unte and Sebastian Altmeyer. Real-Time System Evaluation Techniques: A Systematic Mapping Study. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 12:1-12:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{unte_et_al:LIPIcs.ECRTS.2025.12,
  author =	{Unte, Tilmann L. and Altmeyer, Sebastian},
  title =	{{Real-Time System Evaluation Techniques: A Systematic Mapping Study}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{12:1--12:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.12},
  URN =		{urn:nbn:de:0030-drops-235903},
  doi =		{10.4230/LIPIcs.ECRTS.2025.12},
  annote =	{Keywords: Systematic Mapping Study, Real-Time Systems, Evaluation}
}
Document
Track A: Algorithms, Complexity and Games
Fully Scalable MPC Algorithms for Euclidean k-Center

Authors: Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The k-center problem is a fundamental optimization problem with numerous applications in machine learning, data analysis, data mining, and communication networks. The k-center problem has been extensively studied in the classical sequential setting for several decades, and more recently there have been some efforts in understanding the problem in parallel computing, on the Massively Parallel Computation (MPC) model. For now, we have a good understanding of k-center in the case where each local MPC machine has sufficient local memory to store some representatives from each cluster, that is, when one has Ω(k) local memory per machine. While this setting covers the case of small values of k, for a large number of clusters these algorithms require undesirably large local memory, making them poorly scalable. The case of large k has been considered only recently for the fully scalable low-local-memory MPC model for the Euclidean instances of the k-center problem. However, the earlier works have been considering only the constant dimensional Euclidean space, required a super-constant number of rounds, and produced only k(1+o(1)) centers whose cost is a super-constant approximation of k-center. In this work, we significantly improve upon the earlier results for the k-center problem for the fully scalable low-local-memory MPC model. In the low dimensional Euclidean case in ℝ^d, we present the first constant-round fully scalable MPC algorithm for (2+ε)-approximation. We push the ratio further to (1 + ε)-approximation albeit using slightly more (1 + ε)k centers. All these results naturally extends to slightly super-constant values of d. In the high-dimensional regime, we provide the first fully scalable MPC algorithm that in a constant number of rounds achieves an O(log n/ log log n)-approximation for k-center.

Cite as

Artur Czumaj, Guichen Gao, Mohsen Ghaffari, and Shaofeng H.-C. Jiang. Fully Scalable MPC Algorithms for Euclidean k-Center. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 64:1-64:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2025.64,
  author =	{Czumaj, Artur and Gao, Guichen and Ghaffari, Mohsen and Jiang, Shaofeng H.-C.},
  title =	{{Fully Scalable MPC Algorithms for Euclidean k-Center}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{64:1--64:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.64},
  URN =		{urn:nbn:de:0030-drops-234416},
  doi =		{10.4230/LIPIcs.ICALP.2025.64},
  annote =	{Keywords: Massively Parallel Computing, Euclidean Spaces, k-Center Clustering}
}
Document
Edge-Minimum Walk of Modular Length in Polynomial Time

Authors: Antoine Amarilli, Benoît Groz, and Nicole Wein

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study the problem of finding, in a directed graph, an st-walk of length r od q which is edge-minimum, i.e., uses the smallest number of distinct edges. Despite the vast literature on paths and cycles with modularity constraints, to the best of our knowledge we are the first to study this problem. Our main result is a polynomial-time algorithm that solves this task when r and q are constants. We also show how our proof technique gives an algorithm to solve a generalization of the well-known Directed Steiner Network problem, in which connections between endpoint pairs are required to satisfy modularity constraints on their length. Our algorithm is polynomial when the number of endpoint pairs and the modularity constraints on the pairs are constants. In this version of the article, proofs and examples are omitted because of space constraints. Detailed proofs are available in the full version [Antoine Amarilli et al., 2024].

Cite as

Antoine Amarilli, Benoît Groz, and Nicole Wein. Edge-Minimum Walk of Modular Length in Polynomial Time. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amarilli_et_al:LIPIcs.ITCS.2025.5,
  author =	{Amarilli, Antoine and Groz, Beno\^{i}t and Wein, Nicole},
  title =	{{Edge-Minimum Walk of Modular Length in Polynomial Time}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.5},
  URN =		{urn:nbn:de:0030-drops-226330},
  doi =		{10.4230/LIPIcs.ITCS.2025.5},
  annote =	{Keywords: Directed Steiner Network, Modularity}
}
Document
Fully Characterizing Lossy Catalytic Computation

Authors: Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A catalytic machine is a model of computation where a traditional space-bounded machine is augmented with an additional, significantly larger, "catalytic" tape, which, while being available as a work tape, has the caveat of being initialized with an arbitrary string, which must be preserved at the end of the computation. Despite this restriction, catalytic machines have been shown to have surprising additional power; a logspace machine with a polynomial length catalytic tape, known as catalytic logspace (CL), can compute problems which are believed to be impossible for L. A fundamental question of the model is whether the catalytic condition, of leaving the catalytic tape in its exact original configuration, is robust to minor deviations. This study was initialized by Gupta et al. (2024), who defined lossy catalytic logspace (LCL[e]) as a variant of CL where we allow up to e errors when resetting the catalytic tape. They showed that LCL[e] = CL for any e = O(1), which remains the frontier of our understanding. In this work we completely characterize lossy catalytic space (LCSPACE[s,c,e]) in terms of ordinary catalytic space (CSPACE[s,c]). We show that LCSPACE[s,c,e] = CSPACE[Θ(s + e log c), Θ(c)] In other words, allowing e errors on a catalytic tape of length c is equivalent, up to a constant stretch, to an equivalent errorless catalytic machine with an additional e log c bits of ordinary working memory. As a consequence, we show that for any e, LCL[e] = CL implies SPACE[e log n] ⊆ ZPP, thus giving a barrier to any improvement beyond LCL[O(1)] = CL. We also show equivalent results for non-deterministic and randomized catalytic space.

Cite as

Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker. Fully Characterizing Lossy Catalytic Computation. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 50:1-50:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{folkertsma_et_al:LIPIcs.ITCS.2025.50,
  author =	{Folkertsma, Marten and Mertz, Ian and Speelman, Florian and Tupker, Quinten},
  title =	{{Fully Characterizing Lossy Catalytic Computation}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{50:1--50:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.50},
  URN =		{urn:nbn:de:0030-drops-226786},
  doi =		{10.4230/LIPIcs.ITCS.2025.50},
  annote =	{Keywords: Space complexity, catalytic computation, error-correcting codes}
}
Document
Catalytic Communication

Authors: Edward Pyne, Nathan S. Sheffield, and William Wang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
The study of space-bounded computation has drawn extensively from ideas and results in the field of communication complexity. Catalytic Computation (Buhrman, Cleve, Koucký, Loff and Speelman, STOC 2013) studies the power of bounded space augmented with a pre-filled hard drive that can be used non-destructively during the computation. Presently, many structural questions in this model remain open. Towards a better understanding of catalytic space, we define a model of catalytic communication complexity and prove new upper and lower bounds. In our model, Alice and Bob share a blackboard with a tiny number of free bits, and a larger section with an arbitrary initial configuration. They must jointly compute a function of their inputs, communicating only via the blackboard, and must always reset the blackboard to its initial configuration. We prove several upper and lower bounds: 1) We characterize the simplest nontrivial model, that of one bit of free space and three rounds, in terms of 𝔽₂ rank. In particular, we give natural problems that are solvable with a minimal-sized blackboard that require near-maximal (randomized) communication complexity, and vice versa. 2) We show that allowing constantly many free bits, as opposed to one, allows an exponential improvement on the size of the blackboard for natural problems. To do so, we connect the problem to existence questions in extremal graph theory. 3) We give tight connections between our model and standard notions of non-uniform catalytic computation. Using this connection, we show that with an arbitrary constant number of rounds and bits of free space, one can compute all functions in TC⁰. We view this model as a step toward understanding the value of filled space in computation.

Cite as

Edward Pyne, Nathan S. Sheffield, and William Wang. Catalytic Communication. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 79:1-79:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{pyne_et_al:LIPIcs.ITCS.2025.79,
  author =	{Pyne, Edward and Sheffield, Nathan S. and Wang, William},
  title =	{{Catalytic Communication}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{79:1--79:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.79},
  URN =		{urn:nbn:de:0030-drops-227076},
  doi =		{10.4230/LIPIcs.ITCS.2025.79},
  annote =	{Keywords: Catalytic computation, Branching programs, Communication complexity}
}
Document
The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs

Authors: Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Finding a simple path of even length between two designated vertices in a directed graph is a fundamental NP-complete problem [Andrea S. LaPaugh and Christos H. Papadimitriou, 1984] known as the EP problem. Nedev [Zhivko Prodanov Nedev, 1999] proved in 1999, that for directed planar graphs, the problem can be solved in polynomial time. More than two decades since then, we make the first progress in extending the tractable classes of graphs for this problem. We give a polynomial time algorithm to solve the EP problem for classes of H-minor-free directed graphs, where H is a single-crossing graph. We make two new technical contributions along the way, that might be of independent interest. The first, and perhaps our main, contribution is the construction of small, planar, parity-mimicking networks. These are graphs that mimic parities of all possible paths between a designated set of terminals of the original graph. Finding vertex disjoint paths between given source-destination pairs of vertices is another fundamental problem, known to be NP-complete in directed graphs [Steven Fortune et al., 1980], though known to be tractable in planar directed graphs [Alexander Schrijver, 1994]. We encounter a natural variant of this problem, that of finding disjoint paths between given pairs of vertices, but with constraints on parity of the total length of paths. The other significant contribution of our paper is to give a polynomial time algorithm for the 3-disjoint paths with total parity problem, in directed planar graphs with some restrictions (and also in directed graphs of bounded treewidth).

Cite as

Archit Chauhan, Samir Datta, Chetan Gupta, and Vimal Raj Sharma. The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chauhan_et_al:LIPIcs.MFCS.2024.43,
  author =	{Chauhan, Archit and Datta, Samir and Gupta, Chetan and Sharma, Vimal Raj},
  title =	{{The Even-Path Problem in Directed Single-Crossing-Minor-Free Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.43},
  URN =		{urn:nbn:de:0030-drops-205992},
  doi =		{10.4230/LIPIcs.MFCS.2024.43},
  annote =	{Keywords: Graph Algorithms, EvenPath, Polynomial-time Algorithms, Reachability}
}
Document
Track A: Algorithms, Complexity and Games
Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Authors: Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In this work, we give a unifying view of locality in four settings: distributed algorithms, sequential greedy algorithms, dynamic algorithms, and online algorithms. We introduce a new model of computing, called the online-LOCAL model: the adversary presents the nodes of the input graph one by one, in the same way as in classical online algorithms, but for each node we get to see its radius-T neighborhood before choosing the output. Instead of looking ahead in time, we have the power of looking around in space. We compare the online-LOCAL model with three other models: the LOCAL model of distributed computing, where each node produces its output based on its radius-T neighborhood, the SLOCAL model, which is the sequential counterpart of LOCAL, and the dynamic-LOCAL model, where changes in the dynamic input graph only influence the radius-T neighborhood of the point of change. The SLOCAL and dynamic-LOCAL models are sandwiched between the LOCAL and online-LOCAL models. In general, all four models are distinct, but we study in particular locally checkable labeling problems (LCLs), which is a family of graph problems extensively studied in the context of distributed graph algorithms. We prove that for LCL problems in paths, cycles, and rooted trees, all four models are roughly equivalent: the locality of any LCL problem falls in the same broad class - O(log* n), Θ(log n), or n^Θ(1) - in all four models. In particular, this result enables one to generalize prior lower-bound results from the LOCAL model to all four models, and it also allows one to simulate e.g. dynamic-LOCAL algorithms efficiently in the LOCAL model. We also show that this equivalence does not hold in two-dimensional grids or general bipartite graphs. We provide an online-LOCAL algorithm with locality O(log n) for the 3-coloring problem in bipartite graphs - this is a problem with locality Ω(n^{1/2}) in the LOCAL model and Ω(n^{1/10}) in the SLOCAL model.

Cite as

Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi, and Jukka Suomela. Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{akbari_et_al:LIPIcs.ICALP.2023.10,
  author =	{Akbari, Amirreza and Eslami, Navid and Lievonen, Henrik and Melnyk, Darya and S\"{a}rkij\"{a}rvi, Joona and Suomela, Jukka},
  title =	{{Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.10},
  URN =		{urn:nbn:de:0030-drops-180627},
  doi =		{10.4230/LIPIcs.ICALP.2023.10},
  annote =	{Keywords: Online computation, spatial advice, distributed algorithms, computational complexity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Dynamic Meta-Theorems for Distance and Matching

Authors: Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Reachability, distance, and matching are some of the most fundamental graph problems that have been of particular interest in dynamic complexity theory in recent years [Samir Datta et al., 2018; Samir Datta et al., 2018; Samir Datta et al., 2020]. Reachability can be maintained with first-order update formulas, or equivalently in DynFO in general graphs with n nodes [Samir Datta et al., 2018], even under O(log(n)/log log(n)) changes per step [Samir Datta et al., 2018]. In the context of how large the number of changes can be handled, it has recently been shown [Samir Datta et al., 2020] that under a polylogarithmic number of changes, reachability is in DynFOpar in planar, bounded treewidth, and related graph classes - in fact in any graph where small non-zero circulation weights can be computed in NC. We continue this line of investigation and extend the meta-theorem for reachability to distance and bipartite maximum matching with the same bounds. These are amongst the most general classes of graphs known where we can maintain these problems deterministically without using a majority quantifier and even maintain witnesses. For the bipartite matching result, modifying the approach from [Stephen A. Fenner et al., 2016], we convert the static non-zero circulation weights to dynamic matching-isolating weights. While reachability is in DynFOar under O(log(n)/log log(n)) changes, no such bound is known for either distance or matching in any non-trivial class of graphs under non-constant changes. We show that, in the same classes of graphs as before, bipartite maximum matching is in DynFOar under O(log(n)/log log(n)) changes per step. En route to showing this we prove that the rank of a matrix can be maintained in DynFOar, also under O(log(n)/log log(n)) entry changes, improving upon the previous O(1) bound [Samir Datta et al., 2018]. This implies a similar extension for the non-uniform DynFO bound for maximum matching in general graphs and an alternate algorithm for maintaining reachability under O(log(n)/log log(n)) changes [Samir Datta et al., 2018].

Cite as

Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari. Dynamic Meta-Theorems for Distance and Matching. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 118:1-118:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.ICALP.2022.118,
  author =	{Datta, Samir and Gupta, Chetan and Jain, Rahul and Mukherjee, Anish and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Dynamic Meta-Theorems for Distance and Matching}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{118:1--118:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.118},
  URN =		{urn:nbn:de:0030-drops-164598},
  doi =		{10.4230/LIPIcs.ICALP.2022.118},
  annote =	{Keywords: Dynamic Complexity, Distance, Matching, Derandomization, Isolation, Matrix Rank}
}
Document
Reachability and Matching in Single Crossing Minor Free Graphs

Authors: Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We show that for each single crossing graph H, a polynomially bounded weight function for all H-minor free graphs G can be constructed in logspace such that it gives nonzero weights to all the cycles in G. This class of graphs subsumes almost all classes of graphs for which such a weight function is known to be constructed in logspace. As a consequence, we obtain that for the class of H-minor free graphs where H is a single crossing graph, reachability can be solved in UL, and bipartite maximum matching can be solved in SPL, which are small subclasses of the parallel complexity class NC. In the restrictive case of bipartite graphs, our maximum matching result improves upon the recent result of Eppstein and Vazirani [David Eppstein and Vijay V. Vazirani, 2021], where they show an NC bound for constructing perfect matching in general single crossing minor free graphs.

Cite as

Samir Datta, Chetan Gupta, Rahul Jain, Anish Mukherjee, Vimal Raj Sharma, and Raghunath Tewari. Reachability and Matching in Single Crossing Minor Free Graphs. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 16:1-16:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.FSTTCS.2021.16,
  author =	{Datta, Samir and Gupta, Chetan and Jain, Rahul and Mukherjee, Anish and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Reachability and Matching in Single Crossing Minor Free Graphs}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.16},
  URN =		{urn:nbn:de:0030-drops-155277},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.16},
  annote =	{Keywords: Reachability, Matching, Logspace, Single-crossing minor free graphs}
}
Document
Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs

Authors: Chetan Gupta, Rahul Jain, and Raghunath Tewari

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
A graph separator is a subset of vertices of a graph whose removal divides the graph into small components. Computing small graph separators for various classes of graphs is an important computational task. In this paper, we present a polynomial-time algorithm that uses O(g^{1/2} n^{1/2} log n)-space to find an O(g^{1/2} n^{1/2})-sized separator of a graph having n vertices and embedded on an orientable surface of genus g.

Cite as

Chetan Gupta, Rahul Jain, and Raghunath Tewari. Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2021.23,
  author =	{Gupta, Chetan and Jain, Rahul and Tewari, Raghunath},
  title =	{{Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.23},
  URN =		{urn:nbn:de:0030-drops-155344},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.23},
  annote =	{Keywords: Graph algorithms, space-bounded algorithms, surface embedded graphs, reachability, Euler genus, algorithmic graph theory, computational complexity theory}
}
Document
Efficient Isolation of Perfect Matching in O(log n) Genus Bipartite Graphs

Authors: Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge weight function in logarithmic space, with respect to which the minimum weight perfect matching in the graph is unique, if one exists. As a consequence, we obtain that deciding whether such a graph has a perfect matching or not is in SPL. In 1999, Reinhardt, Allender and Zhou proved that if one can construct a polynomially bounded weight function for a graph in logspace such that it isolates a minimum weight perfect matching in the graph, then the perfect matching problem can be solved in SPL. In this paper, we give a deterministic logspace construction of such a weight function for O(log n) genus bipartite graphs.

Cite as

Chetan Gupta, Vimal Raj Sharma, and Raghunath Tewari. Efficient Isolation of Perfect Matching in O(log n) Genus Bipartite Graphs. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 43:1-43:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.MFCS.2020.43,
  author =	{Gupta, Chetan and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Efficient Isolation of Perfect Matching in O(log n) Genus Bipartite Graphs}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{43:1--43:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.43},
  URN =		{urn:nbn:de:0030-drops-127099},
  doi =		{10.4230/LIPIcs.MFCS.2020.43},
  annote =	{Keywords: Logspace computation, High genus, Matching isolation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Dynamic Complexity of Reachability: How Many Changes Can We Handle?

Authors: Samir Datta, Pankaj Kumar, Anish Mukherjee, Anuj Tawari, Nils Vortmeier, and Thomas Zeume

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In 2015, it was shown that reachability for arbitrary directed graphs can be updated by first-order formulas after inserting or deleting single edges. Later, in 2018, this was extended for changes of size (log n)/(log log n), where n is the size of the graph. Changes of polylogarithmic size can be handled when also majority quantifiers may be used. In this paper we extend these results by showing that, for changes of polylogarithmic size, first-order update formulas suffice for maintaining (1) undirected reachability, and (2) directed reachability under insertions. For classes of directed graphs for which efficient parallel algorithms can compute non-zero circulation weights, reachability can be maintained with update formulas that may use "modulo 2" quantifiers under changes of polylogarithmic size. Examples for these classes include the class of planar graphs and graphs with bounded treewidth. The latter is shown here. As the logics we consider cannot maintain reachability under changes of larger sizes, our results are optimal with respect to the size of the changes.

Cite as

Samir Datta, Pankaj Kumar, Anish Mukherjee, Anuj Tawari, Nils Vortmeier, and Thomas Zeume. Dynamic Complexity of Reachability: How Many Changes Can We Handle?. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 122:1-122:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.ICALP.2020.122,
  author =	{Datta, Samir and Kumar, Pankaj and Mukherjee, Anish and Tawari, Anuj and Vortmeier, Nils and Zeume, Thomas},
  title =	{{Dynamic Complexity of Reachability: How Many Changes Can We Handle?}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{122:1--122:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.122},
  URN =		{urn:nbn:de:0030-drops-125291},
  doi =		{10.4230/LIPIcs.ICALP.2020.122},
  annote =	{Keywords: Dynamic complexity, reachability, complex changes}
}
Document
Unambiguous Catalytic Computation

Authors: Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari

Published in: LIPIcs, Volume 150, 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)


Abstract
The catalytic Turing machine is a model of computation defined by Buhrman, Cleve, Koucký, Loff, and Speelman (STOC 2014). Compared to the classical space-bounded Turing machine, this model has an extra space which is filled with arbitrary content in addition to the clean space. In such a model we study if this additional filled space can be used to increase the power of computation or not, with the condition that the initial content of this extra filled space must be restored at the end of the computation. In this paper, we define the notion of unambiguous catalytic Turing machine and prove that under a standard derandomization assumption, the class of problems solved by an unambiguous catalytic Turing machine is same as the class of problems solved by a general nondeterministic catalytic Turing machine in the logspace setting.

Cite as

Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous Catalytic Computation. In 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 150, pp. 16:1-16:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.FSTTCS.2019.16,
  author =	{Gupta, Chetan and Jain, Rahul and Sharma, Vimal Raj and Tewari, Raghunath},
  title =	{{Unambiguous Catalytic Computation}},
  booktitle =	{39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019)},
  pages =	{16:1--16:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-131-3},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{150},
  editor =	{Chattopadhyay, Arkadev and Gastin, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2019.16},
  URN =		{urn:nbn:de:0030-drops-115782},
  doi =		{10.4230/LIPIcs.FSTTCS.2019.16},
  annote =	{Keywords: Catalytic computation, Logspace, Reinhardt-Allender}
}
  • Refine by Type
  • 17 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 1 2024
  • 1 2023
  • 1 2022
  • 2 2021
  • Show More...

  • Refine by Author
  • 8 Gupta, Chetan
  • 6 Sharma, Vimal Raj
  • 6 Tewari, Raghunath
  • 4 Datta, Samir
  • 4 Jain, Rahul
  • Show More...

  • Refine by Series/Journal
  • 17 LIPIcs

  • Refine by Classification
  • 6 Theory of computation → Complexity classes
  • 3 Theory of computation → Complexity theory and logic
  • 2 Theory of computation → Circuit complexity
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Computer systems organization → Real-time systems
  • Show More...

  • Refine by Keyword
  • 2 Catalytic computation
  • 2 Logspace
  • 2 Matching
  • 2 Reachability
  • 2 catalytic computation
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail