6 Search Results for "Huang, Zengfeng"


Document
Streaming Diameter of High-Dimensional Points

Authors: Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We improve the space bound for streaming approximation of Diameter but also of Farthest Neighbor queries, Minimum Enclosing Ball and its Coreset, in high-dimensional Euclidean spaces. In particular, our deterministic streaming algorithms store 𝒪(ε^{-2}log(1/(ε))) points. This improves by a factor of ε^{-1} the previous space bound of Agarwal and Sharathkumar (SODA 2010), while retaining the state-of-the-art approximation guarantees, such as √2+ε for Diameter or Farthest Neighbor queries, and also offering a simpler and more complete argument. Moreover, we show that storing Ω(ε^{-1}) points is necessary for a streaming (√2+ε)-approximation of Farthest Pair and Farthest Neighbor queries.

Cite as

Magnús M. Halldórsson, Nicolaos Matsakis, and Pavel Veselý. Streaming Diameter of High-Dimensional Points. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 58:1-58:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{halldorsson_et_al:LIPIcs.ESA.2025.58,
  author =	{Halld\'{o}rsson, Magn\'{u}s M. and Matsakis, Nicolaos and Vesel\'{y}, Pavel},
  title =	{{Streaming Diameter of High-Dimensional Points}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{58:1--58:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.58},
  URN =		{urn:nbn:de:0030-drops-245263},
  doi =		{10.4230/LIPIcs.ESA.2025.58},
  annote =	{Keywords: streaming algorithm, farthest pair, diameter, minimum enclosing ball, coreset}
}
Document
RANDOM
Sublinear Space Graph Algorithms in the Continual Release Model

Authors: Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The graph continual release model of differential privacy seeks to produce differentially private solutions to graph problems under a stream of edge updates where new private solutions are released after each update. Thus far, previously known edge-differentially private algorithms for most graph problems including densest subgraph and matchings in the continual release setting only output real-value estimates (not vertex subset solutions) and do not use sublinear space. Instead, they rely on computing exact graph statistics on the input [Hendrik Fichtenberger et al., 2021; Shuang Song et al., 2018]. In this paper, we leverage sparsification to address the above shortcomings for edge-insertion streams. Our edge-differentially private algorithms use sublinear space with respect to the number of edges in the graph while some also achieve sublinear space in the number of vertices in the graph. In addition, for the densest subgraph problem, we also output edge-differentially private vertex subset solutions; no previous graph algorithms in the continual release model output such subsets. We make novel use of assorted sparsification techniques from the non-private streaming and static graph algorithms literature to achieve new results in the sublinear space, continual release setting. This includes algorithms for densest subgraph, maximum matching, as well as the first continual release k-core decomposition algorithm. We also develop a novel sparse level data structure for k-core decomposition that may be of independent interest. To complement our insertion-only algorithms, we conclude with polynomial additive error lower bounds for edge-privacy in the fully dynamic setting, where only logarithmic lower bounds were previously known.

Cite as

Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou. Sublinear Space Graph Algorithms in the Continual Release Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 40:1-40:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{epasto_et_al:LIPIcs.APPROX/RANDOM.2025.40,
  author =	{Epasto, Alessandro and Liu, Quanquan C. and Mukherjee, Tamalika and Zhou, Felix},
  title =	{{Sublinear Space Graph Algorithms in the Continual Release Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{40:1--40:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  URN =		{urn:nbn:de:0030-drops-244064},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  annote =	{Keywords: Differential Privacy, Continual Release, Densest Subgraph, k-Core Decomposition, Maximum Matching}
}
Document
Track A: Algorithms, Complexity and Games
Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case

Authors: Shaofeng H.-C. Jiang and Jianing Lou

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We devise ε-coresets for robust (k,z)-Clustering with m outliers through black-box reductions to vanilla clustering. Given an ε-coreset construction for vanilla clustering with size N, we construct coresets of size N⋅ polylog(kmε^{-1}) + O_z(min{kmε^{-1}, m ε^{-2z}log^z(kmε^{-1})}) for various metric spaces, where O_z hides 2^{O(zlog z)} factors. This increases the size of the vanilla coreset by a small multiplicative factor of polylog(kmε^{-1}), and the additive term is up to a (ε^{-1}log (km))^{O(z)} factor to the size of the optimal robust coreset. Plugging in recent vanilla coreset results of [Cohen-Addad, Saulpic and Schwiegelshohn, STOC'21; Cohen-Addad, Draganov, Russo, Saulpic and Schwiegelshohn, SODA'25], we obtain the first coresets for (k,z)-Clustering with m outliers with size near-linear in k while previous results have size at least Ω(k²) [Huang, Jiang, Lou and Wu, ICLR'23; Huang, Li, Lu and Wu, SODA'25]. Technically, we establish two conditions under which a vanilla coreset is as well a robust coreset. The first condition requires the dataset to satisfy special structures - it can be broken into "dense" parts with bounded diameter. We combine this with a new bounded-diameter decomposition that has only O_z(km ε^{-1}) non-dense points to obtain the O_z(km ε^{-1}) additive bound. Another sufficient condition requires the vanilla coreset to possess an extra size-preserving property. To utilize this condition, we further give a black-box reduction that turns a vanilla coreset to the one that satisfies the said size-preserving property, and this leads to the alternative O_z(mε^{-2z}log^{z}(kmε^{-1})) additive size bound. We also give low-space implementations of our reductions in the dynamic streaming setting. Combined with known streaming constructions for vanilla coresets [Braverman, Frahling, Lang, Sohler and Yang, ICML'17; Hu, Song, Yang and Zhong, arXiv'1802.00459], we obtain the first dynamic streaming algorithms for coresets for k-Median (and k-Means) with m outliers, using space Õ(k + m) ⋅ poly(dε^{-1}log Δ) for inputs on a discrete grid [Δ]^d.

Cite as

Shaofeng H.-C. Jiang and Jianing Lou. Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2025.101,
  author =	{Jiang, Shaofeng H.-C. and Lou, Jianing},
  title =	{{Coresets for Robust Clustering via Black-Box Reductions to Vanilla Case}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.101},
  URN =		{urn:nbn:de:0030-drops-234781},
  doi =		{10.4230/LIPIcs.ICALP.2025.101},
  annote =	{Keywords: Coresets, clustering, outliers, streaming algorithms}
}
Document
Space Complexity of Euclidean Clustering

Authors: Xiaoyi Zhu, Yuxiang Tian, Lingxiao Huang, and Zengfeng Huang

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The (k, z)-Clustering problem in Euclidean space ℝ^d has been extensively studied. Given the scale of data involved, compression methods for the Euclidean (k, z)-Clustering problem, such as data compression and dimension reduction, have received significant attention in the literature. However, the space complexity of the clustering problem, specifically, the number of bits required to compress the cost function within a multiplicative error ε, remains unclear in existing literature. This paper initiates the study of space complexity for Euclidean (k, z)-Clustering and offers both upper and lower bounds. Our space bounds are nearly tight when k is constant, indicating that storing a coreset, a well-known data compression approach, serves as the optimal compression scheme. Furthermore, our lower bound result for (k, z)-Clustering establishes a tight space bound of Θ(n d) for terminal embedding, where n represents the dataset size. Our technical approach leverages new geometric insights for principal angles and discrepancy methods, which may hold independent interest.

Cite as

Xiaoyi Zhu, Yuxiang Tian, Lingxiao Huang, and Zengfeng Huang. Space Complexity of Euclidean Clustering. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 82:1-82:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zhu_et_al:LIPIcs.SoCG.2024.82,
  author =	{Zhu, Xiaoyi and Tian, Yuxiang and Huang, Lingxiao and Huang, Zengfeng},
  title =	{{Space Complexity of Euclidean Clustering}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{82:1--82:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.82},
  URN =		{urn:nbn:de:0030-drops-200279},
  doi =		{10.4230/LIPIcs.SoCG.2024.82},
  annote =	{Keywords: Space complexity, Euclidean clustering, coreset, terminal embedding}
}
Document
Dynamic Graph Stream Algorithms in o(n) Space

Authors: Zengfeng Huang and Pan Peng

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Omega(n) space, where n is the number of vertices, existing works mainly focused on designing ~O(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. n is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n) space algorithms for estimating the number of connected components with additive error epsilon*n and (1 + epsilon)-approximating the weight of minimum spanning tree. The latter improves previous ~O(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are epsilon-far from having the property. We consider the problem of testing k-edge connectivity, k-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly ~O(n^{1-epsilon}) space, which is o(n) for any constant epsilon. To complement our algorithms, we present Omega(n^{1-O(epsilon)}) space lower bounds for these problems, which show that such a dependence on epsilon is necessary.

Cite as

Zengfeng Huang and Pan Peng. Dynamic Graph Stream Algorithms in o(n) Space. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ICALP.2016.18,
  author =	{Huang, Zengfeng and Peng, Pan},
  title =	{{Dynamic Graph Stream Algorithms in o(n) Space}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.18},
  URN =		{urn:nbn:de:0030-drops-62801},
  doi =		{10.4230/LIPIcs.ICALP.2016.18},
  annote =	{Keywords: dynamic graph streams, sketching, property testing, minimum spanning tree}
}
Document
Communication Complexity of Approximate Matching in Distributed Graphs

Authors: Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
In this paper we consider the communication complexity of approximation algorithms for maximum matching in a graph in the message-passing model of distributed computation. The input graph consists of n vertices and edges partitioned over a set of k sites. The output is an \alpha-approximate maximum matching in the input graph which has to be reported by one of the sites. We show a lower bound on the communication complexity of \Omega(\alpha^2 k n) and show that it is tight up to poly-logarithmic factors. This lower bound also applies to other combinatorial problems on graphs in the message-passing computation model, including max-flow and graph sparsification.

Cite as

Zengfeng Huang, Bozidar Radunovic, Milan Vojnovic, and Qin Zhang. Communication Complexity of Approximate Matching in Distributed Graphs. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 460-473, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.STACS.2015.460,
  author =	{Huang, Zengfeng and Radunovic, Bozidar and Vojnovic, Milan and Zhang, Qin},
  title =	{{Communication Complexity of Approximate Matching in Distributed Graphs}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{460--473},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.460},
  URN =		{urn:nbn:de:0030-drops-49348},
  doi =		{10.4230/LIPIcs.STACS.2015.460},
  annote =	{Keywords: approximate maximum matching, distributed computation, communication complexity}
}
  • Refine by Type
  • 6 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2024
  • 1 2016
  • 1 2015

  • Refine by Author
  • 3 Huang, Zengfeng
  • 1 Epasto, Alessandro
  • 1 Halldórsson, Magnús M.
  • 1 Huang, Lingxiao
  • 1 Jiang, Shaofeng H.-C.
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Theory of computation → Computational geometry
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 coreset
  • 1 Continual Release
  • 1 Coresets
  • 1 Densest Subgraph
  • 1 Differential Privacy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail