9 Search Results for "Liaghat, Vahid"


Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
Smoothed Analysis of Online Metric Problems

Authors: Christian Coester and Jack Umenberger

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study three classical online problems - k-server, k-taxi, and chasing size k sets - through a lens of smoothed analysis. Our setting allows request locations to be adversarial up to small perturbations, interpolating between worst-case and average-case models. Specifically, we show that if the metric space is contained in a ball in any normed space and requests are drawn from distributions whose density functions are upper bounded by 1/σ times the uniform density over the ball, then all three problems admit polylog(k/σ)-competitive algorithms. Our approach is simple: it reduces smoothed instances to fully adversarial instances on finite metrics and leverages existing algorithms in a black-box manner. We also provide a lower bound showing that no algorithm can achieve a competitive ratio sub-polylogarithmic in k/σ, matching our upper bounds up to the exponent of the polylogarithm. In contrast, the best known competitive ratios for these problems in the fully adversarial setting are 2k-1, ∞ and Θ(k²), respectively.

Cite as

Christian Coester and Jack Umenberger. Smoothed Analysis of Online Metric Problems. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 115:1-115:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{coester_et_al:LIPIcs.ESA.2025.115,
  author =	{Coester, Christian and Umenberger, Jack},
  title =	{{Smoothed Analysis of Online Metric Problems}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{115:1--115:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.115},
  URN =		{urn:nbn:de:0030-drops-245847},
  doi =		{10.4230/LIPIcs.ESA.2025.115},
  annote =	{Keywords: Online Algorithms, Competitive Analysis, Smoothed Analysis, k-server, k-taxi, Metrical Service Systems}
}
Document
APPROX
Directed Buy-At-Bulk Spanners

Authors: Elena Grigorescu, Nithish Kumar, and Young-San Lin

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We present a framework that unifies directed buy-at-bulk network design and directed spanner problems, namely, buy-at-bulk spanners. The goal is to find a minimum-cost routing solution for network design problems that captures economies at scale, while satisfying demands and distance constraints for terminal pairs. A more restricted version of this problem was shown to be O(2^{log^{1-ε} n})-hard to approximate, where n is the number of vertices, under a standard complexity assumption, by Elkin and Peleg (Theory of Computing Systems, 2007). Our results for buy-at-bulk spanners are the following. - When the edge lengths are integral with magnitude polynomial in n we present: 1) An Õ(n^{4/5 + ε})-approximation polynomial-time randomized algorithm for uniform demands. 2) An Õ(k^{1/2 + ε})-approximation polynomial-time randomized algorithm for general demands, where k is the number of terminal pairs. This can be improved to an Õ(k^{ε})-approximation algorithm for the single-source problem. The same approximation ratios hold in the online setting. - When the edge lengths are rational and well-conditioned, we present an Õ(k^{1/2 + ε})-approximation polynomial-time randomized algorithm that may slightly violate the distance constraints. The result can be improved to an Õ(k^ε)-approximation algorithm for the single-source problem. The same approximation ratios hold for the online setting when the condition number is given in advance. To the best of our knowledge, these are the first sublinear factor approximation algorithms for directed buy-at-bulk spanners. We allow the edge lengths to be negative and the demands to be non-unit, unlike the previous literature. Our approximation ratios match the state-of-the-art ratios in special cases, namely, buy-at-bulk network design by Antonakopoulos (WAOA, 2010) and (online) weighted spanners by Grigorescu, Kumar, and Lin (APPROX 2023). Furthermore, we improve the competitive ratio for online buy-at-bulk by Chakrabarty, Ene, Krishnaswamy, and Panigrahi (SICOMP, 2018) by a factor of log R, where R is the ratio between the maximum demand and the minimum demand.

Cite as

Elena Grigorescu, Nithish Kumar, and Young-San Lin. Directed Buy-At-Bulk Spanners. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 22:1-22:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grigorescu_et_al:LIPIcs.APPROX/RANDOM.2025.22,
  author =	{Grigorescu, Elena and Kumar, Nithish and Lin, Young-San},
  title =	{{Directed Buy-At-Bulk Spanners}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{22:1--22:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.22},
  URN =		{urn:nbn:de:0030-drops-243885},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.22},
  annote =	{Keywords: buy-at-bulk spanners, minimum density junction tree, resource constrained shortest path}
}
Document
Track A: Algorithms, Complexity and Games
Faster Semi-Streaming Matchings via Alternating Trees

Authors: Slobodan Mitrović, Anish Mukherjee, Piotr Sankowski, and Wen-Horng Sheu

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We design a deterministic algorithm for the (1+ε)-approximate maximum matching problem. Our primary result demonstrates that this problem can be solved in O(ε^{-6}) semi-streaming passes, improving upon the O(ε^{-19}) pass-complexity algorithm by [Fischer, Mitrović, and Uitto, STOC'22]. This contributes substantially toward resolving Open question 2 from [Assadi, SOSA'24]. Leveraging the framework introduced in [FMU'22], our algorithm achieves an analogous round complexity speed-up for computing a (1+ε)-approximate maximum matching in both the Massively Parallel Computation (MPC) and CONGEST models. The data structures maintained by our algorithm are formulated using blossom notation and represented through alternating trees. This approach enables a simplified correctness analysis by treating specific components as if operating on bipartite graphs, effectively circumventing certain technical intricacies present in prior work.

Cite as

Slobodan Mitrović, Anish Mukherjee, Piotr Sankowski, and Wen-Horng Sheu. Faster Semi-Streaming Matchings via Alternating Trees. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 119:1-119:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ICALP.2025.119,
  author =	{Mitrovi\'{c}, Slobodan and Mukherjee, Anish and Sankowski, Piotr and Sheu, Wen-Horng},
  title =	{{Faster Semi-Streaming Matchings via Alternating Trees}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{119:1--119:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.119},
  URN =		{urn:nbn:de:0030-drops-234965},
  doi =		{10.4230/LIPIcs.ICALP.2025.119},
  annote =	{Keywords: streaming algorithms, approximation algorithms, maximum matching}
}
Document
On the Extended TSP Problem

Authors: Julián Mestre, Sergey Pupyrev, and Seeun William Umboh

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided binary optimization. Given a graph G = (V, E) with positive edge weights w: E → R^+, and a non-increasing discount function f(⋅) such that f(1) = 1 and f(i) = 0 for i > k, for some parameter k that is part of the problem definition. The problem is to sequence the vertices V so as to maximize ∑_{(u, v) ∈ E} f(|d_u - d_v|)⋅ w(u,v), where d_v ∈ {1, …, |V|} is the position of vertex v in the sequence. We show that Ext-TSP is APX-hard to approximate in general and we give a (k+1)-approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar or treewidth-bounded graphs. Interestingly, the problem remains challenging even on very simple graph classes; indeed, there is no exact n^o(k) time algorithm for trees unless the ETH fails. We complement this negative result with an exact n^O(k) time algorithm for trees.

Cite as

Julián Mestre, Sergey Pupyrev, and Seeun William Umboh. On the Extended TSP Problem. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mestre_et_al:LIPIcs.ISAAC.2021.42,
  author =	{Mestre, Juli\'{a}n and Pupyrev, Sergey and Umboh, Seeun William},
  title =	{{On the Extended TSP Problem}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{42:1--42:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.42},
  URN =		{urn:nbn:de:0030-drops-154751},
  doi =		{10.4230/LIPIcs.ISAAC.2021.42},
  annote =	{Keywords: profile-guided optimization, approximation algorithms, bandwidth, TSP}
}
Document
Greedy Algorithms for Online Survivable Network Design

Authors: Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In an instance of the network design problem, we are given a graph G=(V,E), an edge-cost function c:E -> R^{>= 0}, and a connectivity criterion. The goal is to find a minimum-cost subgraph H of G that meets the connectivity requirements. An important family of this class is the survivable network design problem (SNDP): given non-negative integers r_{u v} for each pair u,v in V, the solution subgraph H should contain r_{u v} edge-disjoint paths for each pair u and v. While this problem is known to admit good approximation algorithms in the offline case, the problem is much harder in the online setting. Gupta, Krishnaswamy, and Ravi [Gupta et al., 2012] (STOC'09) are the first to consider the online survivable network design problem. They demonstrate an algorithm with competitive ratio of O(k log^3 n), where k=max_{u,v} r_{u v}. Note that the competitive ratio of the algorithm by Gupta et al. grows linearly in k. Since then, an important open problem in the online community [Naor et al., 2011; Gupta et al., 2012] is whether the linear dependence on k can be reduced to a logarithmic dependency. Consider an online greedy algorithm that connects every demand by adding a minimum cost set of edges to H. Surprisingly, we show that this greedy algorithm significantly improves the competitive ratio when a congestion of 2 is allowed on the edges or when the model is stochastic. While our algorithm is fairly simple, our analysis requires a deep understanding of k-connected graphs. In particular, we prove that the greedy algorithm is O(log^2 n log k)-competitive if one satisfies every demand between u and v by r_{uv}/2 edge-disjoint paths. The spirit of our result is similar to the work of Chuzhoy and Li [Chuzhoy and Li, 2012] (FOCS'12), in which the authors give a polylogarithmic approximation algorithm for edge-disjoint paths with congestion 2. Moreover, we study the greedy algorithm in the online stochastic setting. We consider the i.i.d. model, where each online demand is drawn from a single probability distribution, the unknown i.i.d. model, where every demand is drawn from a single but unknown probability distribution, and the prophet model in which online demands are drawn from (possibly) different probability distributions. Through a different analysis, we prove that a similar greedy algorithm is constant competitive for the i.i.d. and the prophet models. Also, the greedy algorithm is O(log n)-competitive for the unknown i.i.d. model, which is almost tight due to the lower bound of [Garg et al., 2008] for single connectivity.

Cite as

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin. Greedy Algorithms for Online Survivable Network Design. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 152:1-152:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dehghani_et_al:LIPIcs.ICALP.2018.152,
  author =	{Dehghani, Sina and Ehsani, Soheil and Hajiaghayi, MohammadTaghi and Liaghat, Vahid and Seddighin, Saeed},
  title =	{{Greedy Algorithms for Online Survivable Network Design}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{152:1--152:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.152},
  URN =		{urn:nbn:de:0030-drops-91569},
  doi =		{10.4230/LIPIcs.ICALP.2018.152},
  annote =	{Keywords: survivable network design, online, greedy}
}
Document
Stochastic k-Server: How Should Uber Work?

Authors: Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
In this paper we study a stochastic variant of the celebrated $k$-server problem. In the k-server problem, we are required to minimize the total movement of k servers that are serving an online sequence of $t$ requests in a metric. In the stochastic setting we are given t independent distributions <P_1, P_2, ..., P_t> in advance, and at every time step i a request is drawn from P_i. Designing the optimal online algorithm in such setting is NP-hard, therefore the emphasis of our work is on designing an approximately optimal online algorithm. We first show a structural characterization for a certain class of non-adaptive online algorithms. We prove that in general metrics, the best of such algorithms has a cost of no worse than three times that of the optimal online algorithm. Next, we present an integer program that finds the optimal algorithm of this class for any arbitrary metric. Finally by rounding the solution of the linear relaxation of this program, we present an online algorithm for the stochastic k-server problem with an approximation factor of $3$ in the line and circle metrics and factor of O(log n) in general metrics. In this way, we achieve an approximation factor that is independent of k, the number of servers. Moreover, we define the Uber problem, motivated by extraordinary growth of online network transportation services. In the Uber problem, each demand consists of two points -a source and a destination- in the metric. Serving a demand is to move a server to its source and then to its destination. The objective is again minimizing the total movement of the k given servers. It is not hard to show that given an alpha-approximation algorithm for the k-server problem, we can obtain a max{3,alpha}-approximation algorithm for the Uber problem. Motivated by the fact that demands are usually highly correlated with the time (e.g. what day of the week or what time of the day the demand is arrived), we study the stochastic Uber problem. Using our results for stochastic k-server we can obtain a 3-approximation algorithm for the stochastic Uber problem in line and circle metrics, and a O(log n)-approximation algorithm for a general metric of size n. Furthermore, we extend our results to the correlated setting where the probability of a request arriving at a certain point depends not only on the time step but also on the previously arrived requests.

Cite as

Sina Dehghani, Soheil Ehsani, MohammadTaghi Hajiaghayi, Vahid Liaghat, and Saeed Seddighin. Stochastic k-Server: How Should Uber Work?. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 126:1-126:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{dehghani_et_al:LIPIcs.ICALP.2017.126,
  author =	{Dehghani, Sina and Ehsani, Soheil and Hajiaghayi, MohammadTaghi and Liaghat, Vahid and Seddighin, Saeed},
  title =	{{Stochastic k-Server: How Should Uber Work?}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{126:1--126:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.126},
  URN =		{urn:nbn:de:0030-drops-74806},
  doi =		{10.4230/LIPIcs.ICALP.2017.126},
  annote =	{Keywords: k-server, stochastic, competitive ratio, online algorithm, Uber}
}
Document
Online Energy Storage Management: an Algorithmic Approach

Authors: Anthony Kim, Vahid Liaghat, Junjie Qin, and Amin Saberi

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
Motivated by the importance of energy storage networks in smart grids, we provide an algorithmic study of the online energy storage management problem in a network setting, the first to the best of our knowledge. Given online power supplies, either entirely renewable supplies or those in combination with traditional supplies, we want to route power from the supplies to demands using storage units subject to a decay factor. Our goal is to maximize the total utility of satisfied demands less the total production cost of routed power. We model renewable supplies with the zero production cost function and traditional supplies with convex production cost functions. For two natural storage unit settings, private and public, we design poly-logarithmic competitive algorithms in the network flow model using the dual fitting and online primal dual methods for convex problems. Furthermore, we show strong hardness results for more general settings of the problem. Our techniques may be of independent interest in other routing and storage management problems.

Cite as

Anthony Kim, Vahid Liaghat, Junjie Qin, and Amin Saberi. Online Energy Storage Management: an Algorithmic Approach. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 12:1-12:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{kim_et_al:LIPIcs.APPROX-RANDOM.2016.12,
  author =	{Kim, Anthony and Liaghat, Vahid and Qin, Junjie and Saberi, Amin},
  title =	{{Online Energy Storage Management: an Algorithmic Approach}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{12:1--12:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.12},
  URN =		{urn:nbn:de:0030-drops-66355},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.12},
  annote =	{Keywords: Online Algorithms, Competitive Analysis, Routing, Storage, Approximation Algorithms, Power Control}
}
Document
Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering

Authors: Sina Dehghani, Soheil Ehsani, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Harald Räcke, and Saeed Seddighin

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted degree-bounded Steiner forest (EW-DB-SF) problem and its generalized variant. We obtain our result by demonstrating a new generic approach for solving mixed packing/covering integer programs in the online paradigm. In EW-DB-SF, we are given an edge-weighted graph with a degree bound for every vertex. Given a root vertex in advance, we receive a sequence of terminal vertices in an online manner. Upon the arrival of a terminal, we need to augment our solution subgraph to connect the new terminal to the root. The goal is to minimize the total weight of the solution while respecting the degree bounds on the vertices. In the offline setting, edge-weighted degree-bounded Steiner tree (EW-DB-ST) and its many variations have been extensively studied since early eighties. Unfortunately, the recent advancements in the online network design problems are inherently difficult to adapt for degree-bounded problems. In particular, it is not known whether the fractional solution obtained by standard primal-dual techniques for mixed packing/covering LPs can be rounded online. In contrast, in this paper we obtain our result by using structural properties of the optimal solution, and reducing the EW-DB-SF problem to an exponential-size mixed packing/covering integer program in which every variable appears only once in covering constraints. We then design a generic integral algorithm for solving this restricted family of IPs. As mentioned above, we demonstrate a new technique for solving mixed packing/covering integer programs. Define the covering frequency k of a program as the maximum number of covering constraints in which a variable can participate. Let m denote the number of packing constraints. We design an online deterministic integral algorithm with competitive ratio of O(k*log(m)) for the mixed packing/covering integer programs. We prove the tightness of our result by providing a matching lower bound for any randomized algorithm. We note that our solution solely depends on m and k. Indeed, there can be exponentially many variables. Furthermore, our algorithm directly provides an integral solution, even if the integrality gap of the program is unbounded. We believe this technique can be used as an interesting alternative for the standard primal-dual techniques in solving online problems.

Cite as

Sina Dehghani, Soheil Ehsani, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Harald Räcke, and Saeed Seddighin. Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dehghani_et_al:LIPIcs.ICALP.2016.42,
  author =	{Dehghani, Sina and Ehsani, Soheil and Hajiaghayi, Mohammad Taghi and Liaghat, Vahid and R\"{a}cke, Harald and Seddighin, Saeed},
  title =	{{Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{42:1--42:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.42},
  URN =		{urn:nbn:de:0030-drops-63221},
  doi =		{10.4230/LIPIcs.ICALP.2016.42},
  annote =	{Keywords: Online, Steiner Tree, Approximation, Competitive ratio}
}
  • Refine by Type
  • 9 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 1 2021
  • 1 2018
  • 1 2017
  • 2 2016

  • Refine by Author
  • 4 Liaghat, Vahid
  • 3 Dehghani, Sina
  • 3 Ehsani, Soheil
  • 3 Hajiaghayi, MohammadTaghi
  • 3 Seddighin, Saeed
  • Show More...

  • Refine by Series/Journal
  • 9 LIPIcs

  • Refine by Classification
  • 4 Theory of computation → Online algorithms
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Rounding techniques
  • Show More...

  • Refine by Keyword
  • 2 Competitive Analysis
  • 2 Online Algorithms
  • 2 approximation algorithms
  • 2 k-server
  • 1 Approximation
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail