13 Search Results for "Lin, Cedric Yen-Yu"


Document
Quantum Approximate k-Minimum Finding

Authors: Minbo Gao, Zhengfeng Ji, and Qisheng Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Quantum k-minimum finding is a fundamental subroutine with numerous applications in combinatorial problems and machine learning. Previous approaches typically assume oracle access to exact function values, making it challenging to integrate this subroutine with other quantum algorithms. In this paper, we propose an (almost) optimal quantum k-minimum finding algorithm that works with approximate values for all k ≥ 1, extending a result of van Apeldoorn, Gilyén, Gribling, and de Wolf (FOCS 2017) for k = 1. As practical applications, we present efficient quantum algorithms for identifying the k smallest expectation values among multiple observables and for determining the k lowest ground state energies of a Hamiltonian with a known eigenbasis.

Cite as

Minbo Gao, Zhengfeng Ji, and Qisheng Wang. Quantum Approximate k-Minimum Finding. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 51:1-51:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gao_et_al:LIPIcs.ESA.2025.51,
  author =	{Gao, Minbo and Ji, Zhengfeng and Wang, Qisheng},
  title =	{{Quantum Approximate k-Minimum Finding}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{51:1--51:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.51},
  URN =		{urn:nbn:de:0030-drops-245192},
  doi =		{10.4230/LIPIcs.ESA.2025.51},
  annote =	{Keywords: Quantum Computing, Quantum Algorithms, Quantum Minimum Finding}
}
Document
On Estimating the Quantum 𝓁_α Distance

Authors: Yupan Liu and Qisheng Wang

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study the computational complexity of estimating the quantum 𝓁_α distance T_α(ρ₀,ρ₁), defined via the Schatten α-norm ‖A‖_α := tr(|A|^α)^{1/α}, given poly(n)-size state-preparation circuits of n-qubit quantum states ρ₀ and ρ₁. This quantity serves as a lower bound on the trace distance for α > 1. For any constant α > 1, we develop an efficient rank-independent quantum estimator for T_α(ρ₀,ρ₁) with time complexity poly(n), achieving an exponential speedup over the prior best results of exp(n) due to Wang, Guan, Liu, Zhang, and Ying (IEEE Trans. Inf. Theory 2024). Our improvement leverages efficiently computable uniform polynomial approximations of signed positive power functions within quantum singular value transformation, thereby eliminating the dependence on the rank of the states. Our quantum algorithm reveals a dichotomy in the computational complexity of the Quantum State Distinguishability Problem with Schatten α-norm (QSD_α), which involves deciding whether T_α(ρ₀,ρ₁) is at least 2/5 or at most 1/5. This dichotomy arises between the cases of constant α > 1 and α = 1: - For any 1+Ω(1) ≤ α ≤ O(1), QSD_α is BQP-complete. - For any 1 ≤ α ≤ 1+1/n, QSD_α is QSZK-complete, implying that no efficient quantum estimator for T_α(ρ₀,ρ₁) exists unless BQP = QSZK. The hardness results follow from reductions based on new rank-dependent inequalities for the quantum 𝓁_α distance with 1 ≤ α ≤ ∞, which are of independent interest.

Cite as

Yupan Liu and Qisheng Wang. On Estimating the Quantum 𝓁_α Distance. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 106:1-106:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.ESA.2025.106,
  author =	{Liu, Yupan and Wang, Qisheng},
  title =	{{On Estimating the Quantum 𝓁\underline\alpha Distance}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{106:1--106:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.106},
  URN =		{urn:nbn:de:0030-drops-245758},
  doi =		{10.4230/LIPIcs.ESA.2025.106},
  annote =	{Keywords: quantum algorithms, quantum state testing, trace distance, Schatten norm}
}
Document
RANDOM
Quantum Property Testing in Sparse Directed Graphs

Authors: Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We initiate the study of quantum property testing in sparse directed graphs, and more particularly in the unidirectional model, where the algorithm is allowed to query only the outgoing edges of a vertex. In the classical unidirectional model, the problem of testing k-star-freeness, and more generally k-source-subgraph-freeness, is almost maximally hard for large k. We prove that this problem has almost quadratic advantage in the quantum setting. Moreover, we show that this advantage is nearly tight, by showing a quantum lower bound using the method of dual polynomials on an intermediate problem for a new, property testing version of the k-collision problem that was not studied before. To illustrate that not all problems in graph property testing admit such a quantum speedup, we consider the problem of 3-colorability in the related undirected bounded-degree model, when graphs are now undirected. This problem is maximally hard to test classically, and we show that also quantumly it requires a linear number of queries.

Cite as

Simon Apers, Frédéric Magniez, Sayantan Sen, and Dániel Szabó. Quantum Property Testing in Sparse Directed Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 32:1-32:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2025.32,
  author =	{Apers, Simon and Magniez, Fr\'{e}d\'{e}ric and Sen, Sayantan and Szab\'{o}, D\'{a}niel},
  title =	{{Quantum Property Testing in Sparse Directed Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{32:1--32:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  URN =		{urn:nbn:de:0030-drops-243987},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.32},
  annote =	{Keywords: property testing, quantum computing, bounded-degree directed graphs, dual polynomial method, collision finding}
}
Document
Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians

Authors: Akshar Ramkumar and Mehdi Soleimanifar

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Providing evidence that quantum computers can efficiently prepare low-energy or thermal states of physically relevant interacting quantum systems is a major challenge in quantum information science. A newly developed quantum Gibbs sampling algorithm [Chen et al., 2023] provides an efficient simulation of the detailed-balanced dissipative dynamics of non-commutative quantum systems. The running time of this algorithm depends on the mixing time of the corresponding quantum Markov chain, which has not been rigorously bounded except in the high-temperature regime. In this work, we establish a polylog(n) upper bound on its mixing time for various families of random n × n sparse Hamiltonians at any constant temperature. We further analyze how the choice of the jump operators for the algorithm and the spectral properties of these sparse Hamiltonians influence the mixing time. Our result places this method for Gibbs sampling on par with other efficient algorithms for preparing low-energy states of quantumly easy Hamiltonians.

Cite as

Akshar Ramkumar and Mehdi Soleimanifar. Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 3:1-3:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ramkumar_et_al:LIPIcs.TQC.2025.3,
  author =	{Ramkumar, Akshar and Soleimanifar, Mehdi},
  title =	{{Mixing Time of Quantum Gibbs Sampling for Random Sparse Hamiltonians}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{3:1--3:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.3},
  URN =		{urn:nbn:de:0030-drops-240520},
  doi =		{10.4230/LIPIcs.TQC.2025.3},
  annote =	{Keywords: Quantum algorithms, quantum Gibbs sampling, mixing time analysis}
}
Document
Quantum Search with In-Place Queries

Authors: Blake Holman, Ronak Ramachandran, and Justin Yirka

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Quantum query complexity is typically characterized in terms of xor queries |x,y⟩ ↦ |x,y⊕ f(x)⟩ or phase queries, which ensure that even queries to non-invertible functions are unitary. When querying a permutation, another natural model is unitary: in-place queries |x⟩↦ |f(x)⟩. Some problems are known to require exponentially fewer in-place queries than xor queries, but no separation has been shown in the opposite direction. A candidate for such a separation was the problem of inverting a permutation over N elements. This task, equivalent to unstructured search in the context of permutations, is solvable with O(√N) xor queries but was conjectured to require Ω(N) in-place queries. We refute this conjecture by designing a quantum algorithm for Permutation Inversion using O(√N) in-place queries. Our algorithm achieves the same speedup as Grover’s algorithm despite the inability to efficiently uncompute queries or perform straightforward oracle-controlled reflections. Nonetheless, we show that there are indeed problems which require fewer xor queries than in-place queries. We introduce a subspace-conversion problem called Function Erasure that requires 1 xor query and Θ(√N) in-place queries. Then, we build on a recent extension of the quantum adversary method to characterize exact conditions for a decision problem to exhibit such a separation, and we propose a candidate problem.

Cite as

Blake Holman, Ronak Ramachandran, and Justin Yirka. Quantum Search with In-Place Queries. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{holman_et_al:LIPIcs.TQC.2025.1,
  author =	{Holman, Blake and Ramachandran, Ronak and Yirka, Justin},
  title =	{{Quantum Search with In-Place Queries}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{1:1--1:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.1},
  URN =		{urn:nbn:de:0030-drops-240502},
  doi =		{10.4230/LIPIcs.TQC.2025.1},
  annote =	{Keywords: Quantum algorithms, query complexity, quantum complexity theory, quantum search, Grover’s algorithm, permutation inversion}
}
Document
Space-Bounded Quantum Interactive Proof Systems

Authors: François Le Gall, Yupan Liu, Harumichi Nishimura, and Qisheng Wang

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We introduce two models of space-bounded quantum interactive proof systems, QIPL and QIP_{U}L. The QIP_{U}L model, a space-bounded variant of quantum interactive proofs (QIP) introduced by Watrous (CC 2003) and Kitaev and Watrous (STOC 2000), restricts verifier actions to unitary circuits. In contrast, QIPL allows logarithmically many pinching intermediate measurements per verifier action, making it the weakest model that encompasses the classical model of Condon and Ladner (JCSS 1995). We characterize the computational power of QIPL and QIP_{U}L. When the message number m is polynomially bounded, QIP_{U}L ⊊ QIPL unless P = NP: - QIPL^HC, a subclass of QIPL defined by a high-concentration condition on yes instances, exactly characterizes NP. - QIP_{U}L is contained in P and contains SAC¹ ∪ BQL, where SAC¹ denotes problems solvable by classical logarithmic-depth, semi-unbounded fan-in circuits. However, this distinction vanishes when m is constant. Our results further indicate that (pinching) intermediate measurements uniquely impact space-bounded quantum interactive proofs, unlike in space-bounded quantum computation, where BQL = BQ_{U}L. We also introduce space-bounded unitary quantum statistical zero-knowledge (QSZK_{U}L), a specific form of QIP_{U}L proof systems with statistical zero-knowledge against any verifier. This class is a space-bounded variant of quantum statistical zero-knowledge (QSZK) defined by Watrous (SICOMP 2009). We prove that QSZK_{U}L = BQL, implying that the statistical zero-knowledge property negates the computational advantage typically gained from the interaction.

Cite as

François Le Gall, Yupan Liu, Harumichi Nishimura, and Qisheng Wang. Space-Bounded Quantum Interactive Proof Systems. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall_et_al:LIPIcs.CCC.2025.17,
  author =	{Le Gall, Fran\c{c}ois and Liu, Yupan and Nishimura, Harumichi and Wang, Qisheng},
  title =	{{Space-Bounded Quantum Interactive Proof Systems}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.17},
  URN =		{urn:nbn:de:0030-drops-237115},
  doi =		{10.4230/LIPIcs.CCC.2025.17},
  annote =	{Keywords: Intermediate measurements, Quantum interactive proofs, Space-bounded quantum computation}
}
Document
Directed st-Connectivity with Few Paths Is in Quantum Logspace

Authors: Simon Apers and Roman Edenhofer

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We present a BQSPACE(O(log n))-procedure to count st-paths on directed graphs for which we are promised that there are at most polynomially many paths starting in s and polynomially many paths ending in t. For comparison, the best known classical upper bound in this case just to decide st-connectivity is DSPACE(O(log² n/ log log n)). The result establishes a new relationship between BQL and unambiguity and fewness subclasses of NL. Further, we also show how to recognize directed graphs with at most polynomially many paths between any two nodes in BQSPACE(O(log n)). This yields the first natural candidate for a language separating BQL from 𝖫 and BPL. Until now, all candidates potentially separating these classes were inherently promise problems.

Cite as

Simon Apers and Roman Edenhofer. Directed st-Connectivity with Few Paths Is in Quantum Logspace. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.CCC.2025.18,
  author =	{Apers, Simon and Edenhofer, Roman},
  title =	{{Directed st-Connectivity with Few Paths Is in Quantum Logspace}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.18},
  URN =		{urn:nbn:de:0030-drops-237128},
  doi =		{10.4230/LIPIcs.CCC.2025.18},
  annote =	{Keywords: Quantum computation, Space-bounded complexity classes, Graph connectivity, Unambiguous computation, Random walks}
}
Document
Quantum Data Sketches

Authors: Qin Zhang and Mohsen Heidari

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Recent advancements in quantum technologies, particularly in quantum sensing and simulation, have facilitated the generation and analysis of inherently quantum data. This progress underscores the necessity for developing efficient and scalable quantum data management strategies. This goal faces immense challenges due to the exponential dimensionality of quantum data and its unique quantum properties such as no-cloning and measurement stochasticity. Specifically, classical storage and manipulation of an arbitrary n-qubit quantum state requires exponential space and time. Hence, there is a critical need to revisit foundational data management concepts and algorithms for quantum data. In this paper, we propose succinct quantum data sketches to support basic database operations such as search and selection. We view our work as an initial step towards the development of quantum data management model, opening up many possibilities for future research in this direction.

Cite as

Qin Zhang and Mohsen Heidari. Quantum Data Sketches. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 16:1-16:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ICDT.2025.16,
  author =	{Zhang, Qin and Heidari, Mohsen},
  title =	{{Quantum Data Sketches}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.16},
  URN =		{urn:nbn:de:0030-drops-229570},
  doi =		{10.4230/LIPIcs.ICDT.2025.16},
  annote =	{Keywords: quantum data representation, data sketching, query execution}
}
Document
Track A: Algorithms, Complexity and Games
Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning

Authors: Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We give two new quantum algorithms for solving semidefinite programs (SDPs) providing quantum speed-ups. We consider SDP instances with m constraint matrices, each of dimension n, rank at most r, and sparsity s. The first algorithm assumes an input model where one is given access to an oracle to the entries of the matrices at unit cost. We show that it has run time O~(s^2 (sqrt{m} epsilon^{-10} + sqrt{n} epsilon^{-12})), with epsilon the error of the solution. This gives an optimal dependence in terms of m, n and quadratic improvement over previous quantum algorithms (when m ~~ n). The second algorithm assumes a fully quantum input model in which the input matrices are given as quantum states. We show that its run time is O~(sqrt{m}+poly(r))*poly(log m,log n,B,epsilon^{-1}), with B an upper bound on the trace-norm of all input matrices. In particular the complexity depends only polylogarithmically in n and polynomially in r. We apply the second SDP solver to learn a good description of a quantum state with respect to a set of measurements: Given m measurements and a supply of copies of an unknown state rho with rank at most r, we show we can find in time sqrt{m}*poly(log m,log n,r,epsilon^{-1}) a description of the state as a quantum circuit preparing a density matrix which has the same expectation values as rho on the m measurements, up to error epsilon. The density matrix obtained is an approximation to the maximum entropy state consistent with the measurement data considered in Jaynes' principle from statistical mechanics. As in previous work, we obtain our algorithm by "quantizing" classical SDP solvers based on the matrix multiplicative weight update method. One of our main technical contributions is a quantum Gibbs state sampler for low-rank Hamiltonians, given quantum states encoding these Hamiltonians, with a poly-logarithmic dependence on its dimension, which is based on ideas developed in quantum principal component analysis. We also develop a "fast" quantum OR lemma with a quadratic improvement in gate complexity over the construction of Harrow et al. [Harrow et al., 2017]. We believe both techniques might be of independent interest.

Cite as

Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M. Svore, and Xiaodi Wu. Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 27:1-27:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{brandao_et_al:LIPIcs.ICALP.2019.27,
  author =	{Brand\~{a}o, Fernando G. S. L. and Kalev, Amir and Li, Tongyang and Lin, Cedric Yen-Yu and Svore, Krysta M. and Wu, Xiaodi},
  title =	{{Quantum SDP Solvers: Large Speed-Ups, Optimality, and Applications to Quantum Learning}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{27:1--27:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.27},
  URN =		{urn:nbn:de:0030-drops-106036},
  doi =		{10.4230/LIPIcs.ICALP.2019.27},
  annote =	{Keywords: quantum algorithms, semidefinite program, convex optimization}
}
Document
A Complete Characterization of Unitary Quantum Space

Authors: Bill Fefferman and Cedric Yen-Yu Lin

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
Motivated by understanding the power of quantum computation with restricted number of qubits, we give two complete characterizations of unitary quantum space bounded computation. First we show that approximating an element of the inverse of a well-conditioned efficiently encoded 2^k(n) x 2^k(n) matrix is complete for the class of problems solvable by quantum circuits acting on O(k(n)) qubits with all measurements at the end of the computation. Similarly, estimating the minimum eigenvalue of an efficiently encoded Hermitian 2^k(n) x 2^k(n) matrix is also complete for this class. In the logspace case, our results improve on previous results of Ta-Shma by giving new space-efficient quantum algorithms that avoid intermediate measurements, as well as showing matching hardness results. Additionally, as a consequence we show that preciseQMA, the version of QMA with exponentially small completeness-soundess gap, is equal to PSPACE. Thus, the problem of estimating the minimum eigenvalue of a local Hamiltonian to inverse exponential precision is PSPACE-complete, which we show holds even in the frustration-free case. Finally, we can use this characterization to give a provable setting in which the ability to prepare the ground state of a local Hamiltonian is more powerful than the ability to prepare PEPS states. Interestingly, by suitably changing the parameterization of either of these problems we can completely characterize the power of quantum computation with simultaneously bounded time and space.

Cite as

Bill Fefferman and Cedric Yen-Yu Lin. A Complete Characterization of Unitary Quantum Space. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fefferman_et_al:LIPIcs.ITCS.2018.4,
  author =	{Fefferman, Bill and Lin, Cedric Yen-Yu},
  title =	{{A Complete Characterization of Unitary Quantum Space}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.4},
  URN =		{urn:nbn:de:0030-drops-83242},
  doi =		{10.4230/LIPIcs.ITCS.2018.4},
  annote =	{Keywords: Quantum complexity, space complexity, complete problems, QMA}
}
Document
Space-Efficient Error Reduction for Unitary Quantum Computations

Authors: Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and Harumichi Nishimura

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
This paper presents a general space-efficient method for error reduction for unitary quantum computation. Consider a polynomial-time quantum computation with completeness c and soundness s, either with or without a witness (corresponding to QMA and BQP, respectively). To convert this computation into a new computation with error at most 2^{-p}, the most space-efficient method known requires extra workspace of O(p*log(1/(c-s))) qubits. This space requirement is too large for scenarios like logarithmic-space quantum computations. This paper shows an errorreduction method for unitary quantum computations (i.e., computations without intermediate measurements) that requires extra workspace of just O(log(p/(c-s))) qubits. This in particular gives the first method of strong amplification for logarithmic-space unitary quantum computations with two-sided bounded error. This also leads to a number of consequences in complexity theory, such as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum computations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness gap, and strong amplification for matchgate computations.

Cite as

Bill Fefferman, Hirotada Kobayashi, Cedric Yen-Yu Lin, Tomoyuki Morimae, and Harumichi Nishimura. Space-Efficient Error Reduction for Unitary Quantum Computations. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{fefferman_et_al:LIPIcs.ICALP.2016.14,
  author =	{Fefferman, Bill and Kobayashi, Hirotada and Yen-Yu Lin, Cedric and Morimae, Tomoyuki and Nishimura, Harumichi},
  title =	{{Space-Efficient Error Reduction for Unitary Quantum Computations}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.14},
  URN =		{urn:nbn:de:0030-drops-62975},
  doi =		{10.4230/LIPIcs.ICALP.2016.14},
  annote =	{Keywords: space-bounded computation, quantum Merlin-Arthur proof systems, error reduction, quantum computing}
}
Document
Oracles with Costs

Authors: Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin

Published in: LIPIcs, Volume 44, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)


Abstract
While powerful tools have been developed to analyze quantum query complexity, there are still many natural problems that do not fit neatly into the black box model of oracles. We create a new model that allows multiple oracles with differing costs. This model captures more of the difficulty of certain natural problems. We test this model on a simple problem, Search with Two Oracles, for which we create a quantum algorithm that we prove is asymptotically optimal. We further give some evidence, using a geometric picture of Grover's algorithm, that our algorithm is exactly optimal.

Cite as

Shelby Kimmel, Cedric Yen-Yu Lin, and Han-Hsuan Lin. Oracles with Costs. In 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 44, pp. 1-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{kimmel_et_al:LIPIcs.TQC.2015.1,
  author =	{Kimmel, Shelby and Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Oracles with Costs}},
  booktitle =	{10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015)},
  pages =	{1--26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-96-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{44},
  editor =	{Beigi, Salman and K\"{o}nig, Robert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2015.1},
  URN =		{urn:nbn:de:0030-drops-55459},
  doi =		{10.4230/LIPIcs.TQC.2015.1},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Amplitude Amplification}
}
Document
Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester

Authors: Cedric Yen-Yu Lin and Han-Hsuan Lin

Published in: LIPIcs, Volume 33, 30th Conference on Computational Complexity (CCC 2015)


Abstract
Inspired by the Elitzur-Vaidman bomb testing problem [Elitzur/Vaidman 1993], we introduce a new query complexity model, which we call bomb query complexity B(f). We investigate its relationship with the usual quantum query complexity Q(f), and show that B(f)=Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Theta(sqrt(B(f))). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n^(1.5)) quantum query complexity, improving the best known algorithm of O(n^(1.5) * sqrt(log(n))) [Furrow, 2008]. Applying this method to the maximum bipartite matching problem gives an O(n^(1.75)) algorithm, improving the best known trivial O(n^2) upper bound.

Cite as

Cedric Yen-Yu Lin and Han-Hsuan Lin. Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester. In 30th Conference on Computational Complexity (CCC 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 33, pp. 537-566, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.CCC.2015.537,
  author =	{Lin, Cedric Yen-Yu and Lin, Han-Hsuan},
  title =	{{Upper Bounds on Quantum Query Complexity Inspired by the Elitzur-Vaidman Bomb Tester}},
  booktitle =	{30th Conference on Computational Complexity (CCC 2015)},
  pages =	{537--566},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-81-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{33},
  editor =	{Zuckerman, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2015.537},
  URN =		{urn:nbn:de:0030-drops-50635},
  doi =		{10.4230/LIPIcs.CCC.2015.537},
  annote =	{Keywords: Quantum Algorithms, Query Complexity, Elitzur-Vaidman Bomb Tester, Adversary Method, Maximum Bipartite Matching}
}
  • Refine by Type
  • 13 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 8 2025
  • 1 2019
  • 1 2018
  • 1 2016
  • 2 2015

  • Refine by Author
  • 4 Lin, Cedric Yen-Yu
  • 3 Wang, Qisheng
  • 2 Apers, Simon
  • 2 Fefferman, Bill
  • 2 Lin, Han-Hsuan
  • Show More...

  • Refine by Series/Journal
  • 13 LIPIcs

  • Refine by Classification
  • 6 Theory of computation → Quantum query complexity
  • 3 Theory of computation → Design and analysis of algorithms
  • 3 Theory of computation → Quantum complexity theory
  • 2 Theory of computation → Quantum information theory
  • 1 Information systems → Query operators
  • Show More...

  • Refine by Keyword
  • 3 Quantum Algorithms
  • 2 Quantum algorithms
  • 2 Query Complexity
  • 2 quantum algorithms
  • 2 quantum computing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail