8 Search Results for "Müller, Günter"


Document
Optimal Antimatroid Sorting

Authors: Benjamin Aram Berendsohn

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical comparison-based sorting problem asks us to find the underlying total ordering of a given set of elements, where we can only access the elements via comparisons. In this paper, we study a restricted version, where, as a hint, a set T of possible total orderings is given, usually in some compressed form. Recently, an algorithm called topological heapsort with optimal running time was found for case where T is the set of topological orderings of a given directed acyclic graph, or, equivalently, T is the set of linear extensions of a partial ordering [Haeupler et al. 2024]. We show that a simple generalization of topological heapsort is applicable to a much broader class of restricted sorting problems, where T corresponds to a given antimatroid. As a consequence, we obtain optimal algorithms for the following restricted sorting problems, where the allowed total orders are … - … restricted by a given set of monotone precedence formulas; - … the perfect elimination orders of a given chordal graph; or - … the possible vertex search orders of a given connected rooted graph.

Cite as

Benjamin Aram Berendsohn. Optimal Antimatroid Sorting. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 104:1-104:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{berendsohn:LIPIcs.ESA.2025.104,
  author =	{Berendsohn, Benjamin Aram},
  title =	{{Optimal Antimatroid Sorting}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{104:1--104:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.104},
  URN =		{urn:nbn:de:0030-drops-245735},
  doi =		{10.4230/LIPIcs.ESA.2025.104},
  annote =	{Keywords: sorting, working-set heap, greedy, antimatroid}
}
Document
Repairing Schedules by Removing Waiting Times: A Parameterized Complexity Analysis

Authors: Niels Grüttemeier and Klaus Heeger

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the problem of repairing production schedules in a job-shop setting by reducing pre-planned waiting times. Herein, a schedule of all jobs is given. To compensate unforeseen disturbances, this schedule contains waiting times between the execution of two consecutive tasks of a job. Further, we assume that the schedule temporarily overloads some machines, e.g. due to reduced machine capacities because of worker sickness or (partially) broken machines. We study the problem of removing as few waiting times as possible in order to eliminate the machine overloads. After formalizing this problem, we perform an extensive analysis of its parameterized complexity with respect to several natural parameters, resulting in a detailed picture of the problem’s complexity.

Cite as

Niels Grüttemeier and Klaus Heeger. Repairing Schedules by Removing Waiting Times: A Parameterized Complexity Analysis. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 31:1-31:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gruttemeier_et_al:LIPIcs.WADS.2025.31,
  author =	{Gr\"{u}ttemeier, Niels and Heeger, Klaus},
  title =	{{Repairing Schedules by Removing Waiting Times: A Parameterized Complexity Analysis}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{31:1--31:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.31},
  URN =		{urn:nbn:de:0030-drops-242624},
  doi =		{10.4230/LIPIcs.WADS.2025.31},
  annote =	{Keywords: Job shop, parallel machines, reactive scheduling}
}
Document
Efficient Certified Reasoning for Binarized Neural Networks

Authors: Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
Neural networks have emerged as essential components in safety-critical applications - these use cases demand complex, yet trustworthy computations. Binarized Neural Networks (BNNs) are a type of neural network where each neuron is constrained to a Boolean value; they are particularly well-suited for safety-critical tasks because they retain much of the computational capacities of full-scale (floating-point or quantized) deep neural networks, but remain compatible with satisfiability solvers for qualitative verification and with model counters for quantitative reasoning. However, existing methods for BNN analysis suffer from either limited scalability or susceptibility to soundness errors, which hinders their applicability in real-world scenarios. In this work, we present a scalable and trustworthy approach for both qualitative and quantitative verification of BNNs. Our approach introduces a native representation of BNN constraints in a custom-designed solver for qualitative reasoning, and in an approximate model counter for quantitative reasoning. We further develop specialized proof generation and checking pipelines with native support for BNN constraint reasoning, ensuring trustworthiness for all of our verification results. Empirical evaluations on a BNN robustness verification benchmark suite demonstrate that our certified solving approach achieves a 9× speedup over prior certified CNF and PB-based approaches, and our certified counting approach achieves a 218× speedup over the existing CNF-based baseline. In terms of coverage, our pipeline produces fully certified results for 99% and 86% of the qualitative and quantitative reasoning queries on BNNs, respectively. This is in sharp contrast to the best existing baselines which can fully certify only 62% and 4% of the queries, respectively.

Cite as

Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel. Efficient Certified Reasoning for Binarized Neural Networks. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{yang_et_al:LIPIcs.SAT.2025.32,
  author =	{Yang, Jiong and Tan, Yong Kiam and Soos, Mate and Myreen, Magnus O. and Meel, Kuldeep S.},
  title =	{{Efficient Certified Reasoning for Binarized Neural Networks}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.32},
  URN =		{urn:nbn:de:0030-drops-237665},
  doi =		{10.4230/LIPIcs.SAT.2025.32},
  annote =	{Keywords: Neural network verification, proof certification, SAT solving, approximate model counting}
}
Document
Vision
Towards Ordinal Data Science

Authors: Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Order is one of the main instruments to measure the relationship between objects in (empirical) data. However, compared to methods that use numerical properties of objects, the amount of ordinal methods developed is rather small. One reason for this is the limited availability of computational resources in the last century that would have been required for ordinal computations. Another reason - particularly important for this line of research - is that order-based methods are often seen as too mathematically rigorous for applying them to real-world data. In this paper, we will therefore discuss different means for measuring and ‘calculating’ with ordinal structures - a specific class of directed graphs - and show how to infer knowledge from them. Our aim is to establish Ordinal Data Science as a fundamentally new research agenda. Besides cross-fertilization with other cornerstone machine learning and knowledge representation methods, a broad range of disciplines will benefit from this endeavor, including, psychology, sociology, economics, web science, knowledge engineering, scientometrics.

Cite as

Gerd Stumme, Dominik Dürrschnabel, and Tom Hanika. Towards Ordinal Data Science. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 6:1-6:39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{stumme_et_al:TGDK.1.1.6,
  author =	{Stumme, Gerd and D\"{u}rrschnabel, Dominik and Hanika, Tom},
  title =	{{Towards Ordinal Data Science}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{6:1--6:39},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.6},
  URN =		{urn:nbn:de:0030-drops-194801},
  doi =		{10.4230/TGDK.1.1.6},
  annote =	{Keywords: Order relation, data science, relational theory of measurement, metric learning, general algebra, lattices, factorization, approximations and heuristics, factor analysis, visualization, browsing, explainability}
}
Document
A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems

Authors: Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Designing and modeling complex cyber-physical systems (CPS) faces the double challenge of combined discrete-continuous dynamics and concurrent behavior. Existing formal modeling and verification languages for CPS expose the underlying proof search technology. They lack high-level structuring elements and are not efficiently executable. The ensuing modeling gap renders formal CPS models hard to understand and to validate. We propose a high-level programming-based approach to formal modeling and verification of hybrid systems as a hybrid extension of an Active Objects language. Well-structured hybrid active programs and requirements allow automatic, reachability-preserving translation into differential dynamic logic, a logic for hybrid (discrete-continuous) programs. Verification is achieved by discharging the resulting formulas with the theorem prover KeYmaera X. We demonstrate the usability of our approach with case studies.

Cite as

Eduard Kamburjan, Stefan Mitsch, and Reiner Hähnle. A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 04:1-04:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kamburjan_et_al:LITES.8.2.4,
  author =	{Kamburjan, Eduard and Mitsch, Stefan and H\"{a}hnle, Reiner},
  title =	{{A Hybrid Programming Language for Formal Modeling and Verification of Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{04:1--04:34},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.4},
  URN =		{urn:nbn:de:0030-drops-192965},
  doi =		{10.4230/LITES.8.2.4},
  annote =	{Keywords: Active Objects, Differential Dynamic Logic, Hybrid Systems}
}
Document
FORTES: Forensic Information Flow Analysis of Business Processes

Authors: Rafael Accorsi and Günter Müller

Published in: Dagstuhl Seminar Proceedings, Volume 10141, Distributed Usage Control (2010)


Abstract
Nearly 70% of all business processes in use today rely on automated workflow systems for their execution. Despite the growing expenses in the design of advanced tools for secure and compliant deployment of workflows, an exponential growth of dependability incidents persists. Concepts beyond access control focusing on information flow control offer new paradigms to design security mechanisms for reliable and secure IT-based workflows. This talk presents FORTES, an approach for the forensic analysis of information flow properties. FORTES claims that information flow control can be made usable as a core of an audit-control system. For this purpose, it reconstructs workflow models from secure log files (i.e. execution traces) and, applying security policies, analyzes the information flows to distinguish security relevant from security irrelevant information flows. FORTES thus cannot prevent security policy violations, but by detecting them with well-founded analysis, improve the precision of audit controls and the generated certificates.

Cite as

Rafael Accorsi and Günter Müller. FORTES: Forensic Information Flow Analysis of Business Processes. In Distributed Usage Control. Dagstuhl Seminar Proceedings, Volume 10141, pp. 1-3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{accorsi_et_al:DagSemProc.10141.4,
  author =	{Accorsi, Rafael and M\"{u}ller, G\"{u}nter},
  title =	{{FORTES: Forensic Information Flow Analysis of Business Processes}},
  booktitle =	{Distributed Usage Control},
  pages =	{1--3},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10141},
  editor =	{Sandro Etalle and Alexander Pretschner and Raiv S. Sandhu and Marianne Winslett},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10141.4},
  URN =		{urn:nbn:de:0030-drops-27167},
  doi =		{10.4230/DagSemProc.10141.4},
  annote =	{Keywords: Audit, Information flow analysis, business processes}
}
Document
08491 Abstracts Collection – Theoretical Foundations of Practical Information Security

Authors: Ran Canetti, Shafi Goldwasser, Günter Müller, and Rainer Steinwandt

Published in: Dagstuhl Seminar Proceedings, Volume 8491, Theoretical Foundations of Practical Information Security (2009)


Abstract
From 30.11. to 05.12.2008, the Dagstuhl Seminar 08491 ``Theoretical Foundations of Practical Information Security '' was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Ran Canetti, Shafi Goldwasser, Günter Müller, and Rainer Steinwandt. 08491 Abstracts Collection – Theoretical Foundations of Practical Information Security. In Theoretical Foundations of Practical Information Security. Dagstuhl Seminar Proceedings, Volume 8491, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{canetti_et_al:DagSemProc.08491.1,
  author =	{Canetti, Ran and Goldwasser, Shafi and M\"{u}ller, G\"{u}nter and Steinwandt, Rainer},
  title =	{{08491 Abstracts Collection – Theoretical Foundations of Practical Information Security}},
  booktitle =	{Theoretical Foundations of Practical Information Security},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{8491},
  editor =	{Ran Canetti and Shafi Goldwasser and G\"{u}nter M\"{u}ller and Rainer Steinwandt},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08491.1},
  URN =		{urn:nbn:de:0030-drops-18945},
  doi =		{10.4230/DagSemProc.08491.1},
  annote =	{Keywords: Organic computing, self-organisation, design, adaptivity}
}
Document
08491 Executive Summary – Theoretical Foundations of Practical Information Security

Authors: Ran Canetti, Shafi Goldwasser, Günter Müller, and Rainer Steinwandt

Published in: Dagstuhl Seminar Proceedings, Volume 8491, Theoretical Foundations of Practical Information Security (2009)


Abstract
Designing, building, and operating secure information processing systems is a complex task, and the only scientific way to address the diverse challenges arising throughout the life-cycle of security criticial systems is to consolidate and increase the knowledge of the theoretical foundations of practical security problems. To this aim, the mutual exchange of ideas across individual security research communities can be extraordinary beneficial. Accordingly, the motivation of this Dagstuhl seminar was the integration of different research areas with the common goal of providing an integral theoretical basis that is needed for the design of secure information processing systems.

Cite as

Ran Canetti, Shafi Goldwasser, Günter Müller, and Rainer Steinwandt. 08491 Executive Summary – Theoretical Foundations of Practical Information Security. In Theoretical Foundations of Practical Information Security. Dagstuhl Seminar Proceedings, Volume 8491, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{canetti_et_al:DagSemProc.08491.2,
  author =	{Canetti, Ran and Goldwasser, Shafi and M\"{u}ller, G\"{u}nter and Steinwandt, Rainer},
  title =	{{08491 Executive Summary – Theoretical Foundations of Practical Information Security }},
  booktitle =	{Theoretical Foundations of Practical Information Security},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{8491},
  editor =	{Ran Canetti and Shafi Goldwasser and G\"{u}nter M\"{u}ller and Rainer Steinwandt},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08491.2},
  URN =		{urn:nbn:de:0030-drops-18938},
  doi =		{10.4230/DagSemProc.08491.2},
  annote =	{Keywords: Organic computing, self-organisation, design, adaptivity}
}
  • Refine by Type
  • 8 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2023
  • 1 2022
  • 1 2010
  • 2 2009

  • Refine by Author
  • 3 Müller, Günter
  • 2 Canetti, Ran
  • 2 Goldwasser, Shafi
  • 2 Steinwandt, Rainer
  • 1 Accorsi, Rafael
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 1 LITES
  • 1 TGDK
  • 3 DagSemProc

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Boolean algebra algorithms
  • 1 Computing methodologies → Distributed programming languages
  • Show More...

  • Refine by Keyword
  • 2 Organic computing
  • 2 adaptivity
  • 2 design
  • 2 self-organisation
  • 1 Active Objects
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail