6 Search Results for "Orden, David"


Document
An Improved Bound for Plane Covering Paths

Authors: Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A covering path for a finite set P of points in the plane is a polygonal path such that every point of P lies on a segment of the path. The vertices of the path need not be at points of P. A covering path is plane if its segments do not cross each other. Let π(n) be the minimum number such that every set of n points in the plane admits a plane covering path with at most π(n) segments. We prove that π(n) ≤ ⌈6n/7⌉. This improves the previous best-known upper bound of ⌈21n/22⌉, due to Biniaz (SoCG 2023). Our proof is constructive and yields a simple O(n log n)-time algorithm for computing a plane covering path.

Cite as

Hugo A. Akitaya, Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, Cyril Gavoille, John Iacono, Linda Kleist, Michiel Smid, Diane Souvaine, and Leonidas Theocharous. An Improved Bound for Plane Covering Paths. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 75:1-75:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.ESA.2025.75,
  author =	{A. Akitaya, Hugo and Aloupis, Greg and Biniaz, Ahmad and Bose, Prosenjit and De Carufel, Jean-Lou and Gavoille, Cyril and Iacono, John and Kleist, Linda and Smid, Michiel and Souvaine, Diane and Theocharous, Leonidas},
  title =	{{An Improved Bound for Plane Covering Paths}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{75:1--75:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.75},
  URN =		{urn:nbn:de:0030-drops-245432},
  doi =		{10.4230/LIPIcs.ESA.2025.75},
  annote =	{Keywords: Covering Path, Upper Bound, Simple Algorithm}
}
Document
On Geodesic Disks Enclosing Many Points

Authors: Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
Let Π(n) be the largest number such that for every set S of n points in a polygon P, there always exist two points x, y ∈ S, where every geodesic disk containing x and y contains Π(n) points of S. We establish upper and lower bounds for Π(n), and show that ⌈n/5⌉ +1 ≤ Π(n) ≤ ⌈n/4⌉ +1. We also show that there always exist two points x, y ∈ S such that every geodesic disk with x and y on its boundary contains at least 16/665(n-2) ≈ ⌈(n-2)/41.6⌉ points both inside and outside the disk. For the special case where the points of S are restricted to be the vertices of a geodesically convex polygon we give a tight bound of ⌈n/3⌉ + 1. We provide the same tight bound when we only consider geodesic disks having x and y as diametral endpoints. Finally, we give a lower bound of ⌈(n-2)/36⌉+2 for the two-colored version of the problem.

Cite as

Prosenjit Bose, Guillermo Esteban, David Orden, Rodrigo I. Silveira, and Tyler Tuttle. On Geodesic Disks Enclosing Many Points. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.WADS.2025.10,
  author =	{Bose, Prosenjit and Esteban, Guillermo and Orden, David and Silveira, Rodrigo I. and Tuttle, Tyler},
  title =	{{On Geodesic Disks Enclosing Many Points}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.10},
  URN =		{urn:nbn:de:0030-drops-242414},
  doi =		{10.4230/LIPIcs.WADS.2025.10},
  annote =	{Keywords: Enclosing disks, Geodesic disks, Bichromatic}
}
Document
Spanner for the 0/1/∞ Weighted Region Problem

Authors: Joachim Gudmundsson, Zijin Huang, André van Renssen, and Sampson Wong

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
We consider the problem of computing an approximate weighted shortest path in a weighted planar subdivision, with weights assigned from the set {0, 1, ∞}. The subdivision includes zero-cost regions (0-regions) with weight 0 and obstacles with weight ∞, all embedded in a plane with weight 1. In a polygonal domain, where the 0-regions and obstacles are non-overlapping polygons (not necessarily convex) with in total N vertices, we present an algorithm that computes a (1 + ε)-approximate spanner of the input vertices in expected Õ(N/ε³) time, for 0 < ε < 1. Using our spanner, we can compute a (1 + ε)-approximate weighted shortest path between any two points (not necessarily vertices) in Õ(N/ε³) time. Furthermore, we prove that our results more generally apply to non-polygonal convex regions. Using this generalisation, one can approximate the weak partial Fréchet similarity [Buchin et al., 2009] between two polygonal curves in expected Õ(n²/ε²) time, where n is the total number of vertices of the input curves.

Cite as

Joachim Gudmundsson, Zijin Huang, André van Renssen, and Sampson Wong. Spanner for the 0/1/∞ Weighted Region Problem. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 33:1-33:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gudmundsson_et_al:LIPIcs.WADS.2025.33,
  author =	{Gudmundsson, Joachim and Huang, Zijin and van Renssen, Andr\'{e} and Wong, Sampson},
  title =	{{Spanner for the 0/1/∞ Weighted Region Problem}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{33:1--33:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.33},
  URN =		{urn:nbn:de:0030-drops-242644},
  doi =		{10.4230/LIPIcs.WADS.2025.33},
  annote =	{Keywords: weighted region problem, approximate shortest path, spanner}
}
Document
Polychromatic Coloring of Tuples in Hypergraphs

Authors: Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A hypergraph H consists of a set V of vertices and a set E of hyperedges that are subsets of V. A t-tuple of H is a subset of t vertices of V. A t-tuple k-coloring of H is a mapping of its t-tuples into k colors. A coloring is called (t,k,f)-polychromatic if each hyperedge of E that has at least f vertices contains tuples of all the k colors. Let f_H(t,k) be the minimum f such that H has a (t,k,f)-polychromatic coloring. For a family of hypergraphs ℋ let f_H(t,k) be the maximum f_H(t,k) over all hypergraphs H in H. Determining f_H(t,k) has been an active research direction in recent years. This is challenging even for t = 1. We present several new results in this direction for t ≥ 2. - Let H be the family of hypergraphs H that is obtained by taking any set P of points in ℝ², setting V: = P and E: = {d ∩ P: d is a disk in ℝ²}. We prove that f_ H(2,k) ≤ 3.7^k, that is, the pairs of points (2-tuples) can be k-colored such that any disk containing at least 3.7^k points has pairs of all colors. We generalize this result to points and balls in higher dimensions. - For the family H of hypergraphs that are defined by grid vertices and axis-parallel rectangles in the plane, we show that f_H(2,k) ≤ √{ck ln k} for some constant c. We then generalize this to higher dimensions, to other shapes, and to tuples of larger size. - For the family H of shrinkable hypergraphs of VC-dimension at most d we prove that f_ H(d+1,k) ≤ c^k for some constant c = c(d). Towards this bound, we obtain a result of independent interest: Every hypergraph with n vertices and with VC-dimension at most d has a (d+1)-tuple T of depth at least n/c, i.e., any hyperedge that contains T also contains n/c other vertices. - For the relationship between t-tuple coloring and vertex coloring in any hypergraph H we establish the inequality 1/e⋅ tk^{1/t} ≤ f_H(t,k) ≤ f_H(1,tk^{1/t}). For the special case of k = 2, referred to as the bichromatic coloring, we prove that t+1 ≤ f_H(t,2) ≤ max{f_H(1,2), t+1}; this improves upon the previous best known upper bound. - We study the relationship between tuple coloring and epsilon nets. In particular we show that if f_H(1,k) = O(k) for a hypergraph H with n vertices, then for any 0 < ε < 1 the t-tuples of H can be partitioned into Ω((εn/t)^t) ε-t-nets. This bound is tight when t is a constant.

Cite as

Ahmad Biniaz, Jean-Lou De Carufel, Anil Maheshwari, Michiel Smid, Shakhar Smorodinsky, and Miloš Stojaković. Polychromatic Coloring of Tuples in Hypergraphs. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{biniaz_et_al:LIPIcs.SoCG.2025.19,
  author =	{Biniaz, Ahmad and De Carufel, Jean-Lou and Maheshwari, Anil and Smid, Michiel and Smorodinsky, Shakhar and Stojakovi\'{c}, Milo\v{s}},
  title =	{{Polychromatic Coloring of Tuples in Hypergraphs}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.19},
  URN =		{urn:nbn:de:0030-drops-231718},
  doi =		{10.4230/LIPIcs.SoCG.2025.19},
  annote =	{Keywords: Hypergraph Coloring, Polychromatic Coloring, Geometric Hypergraphs, Cover Decomposable Hypergraphs, Epsilon Nets}
}
Document
Levels in Arrangements: Linear Relations, the g-Matrix, and Applications to Crossing Numbers

Authors: Elizaveta Streltsova and Uli Wagner

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
A long-standing conjecture of Eckhoff, Linhart, and Welzl, which would generalize McMullen’s Upper Bound Theorem for polytopes and refine asymptotic bounds due to Clarkson, asserts that for k ⩽ ⌊(n-d-2)/2⌋, the complexity of the (⩽ k)-level in a simple arrangement of n hemispheres in S^d is maximized for arrangements that are polar duals of neighborly d-polytopes. We prove this conjecture in the case n = d+4. By Gale duality, this implies the following result about crossing numbers: In every spherical arc drawing of K_n in S² (given by a set V ⊂ S² of n unit vectors connected by spherical arcs), the number of crossings is at least 1/4 ⌊n/2⌋ ⌊(n-1)/2⌋ ⌊(n-2)/2⌋ ⌊(n-3)/2⌋. This lower bound is attained if every open linear halfspace contains at least ⌊(n-2)/2⌋ of the vectors in V. Moreover, we determine the space of all linear and affine relations that hold between the face numbers of levels in simple arrangements of n hemispheres in S^d. This completes a long line of research on such relations, answers a question posed by Andrzejak and Welzl in 2003, and generalizes the classical fact that the Dehn-Sommerville relations generate all linear relations between the face numbers of simple polytopes (which correspond to the 0-level). To prove these results, we introduce the notion of the g-matrix, which encodes the face numbers of levels in an arrangement and generalizes the classical g-vector of a polytope.

Cite as

Elizaveta Streltsova and Uli Wagner. Levels in Arrangements: Linear Relations, the g-Matrix, and Applications to Crossing Numbers. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 75:1-75:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{streltsova_et_al:LIPIcs.SoCG.2025.75,
  author =	{Streltsova, Elizaveta and Wagner, Uli},
  title =	{{Levels in Arrangements: Linear Relations, the g-Matrix, and Applications to Crossing Numbers}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{75:1--75:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.75},
  URN =		{urn:nbn:de:0030-drops-232276},
  doi =		{10.4230/LIPIcs.SoCG.2025.75},
  annote =	{Keywords: Levels in arrangements, k-sets, k-facets, convex polytopes, f-vector, h-vector, g-vector, Dehn-Sommerville relations, Radon partitions, Gale duality, g-matrix}
}
Document
Illuminating the x-Axis by α-Floodlights

Authors: Bengt J. Nilsson, David Orden, Leonidas Palios, Carlos Seara, and Paweł Żyliński

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Given a set S of regions with piece-wise linear boundary and a positive angle α < 90°, we consider the problem of computing the locations and orientations of the minimum number of α-floodlights positioned at points in S which suffice to illuminate the entire x-axis. We show that the problem can be solved in O(n log n) time and O(n) space, where n is the number of vertices of the set S.

Cite as

Bengt J. Nilsson, David Orden, Leonidas Palios, Carlos Seara, and Paweł Żyliński. Illuminating the x-Axis by α-Floodlights. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 11:1-11:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nilsson_et_al:LIPIcs.ISAAC.2021.11,
  author =	{Nilsson, Bengt J. and Orden, David and Palios, Leonidas and Seara, Carlos and \.{Z}yli\'{n}ski, Pawe{\l}},
  title =	{{Illuminating the x-Axis by \alpha-Floodlights}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{11:1--11:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.11},
  URN =		{urn:nbn:de:0030-drops-154444},
  doi =		{10.4230/LIPIcs.ISAAC.2021.11},
  annote =	{Keywords: Computational Geometry, Visibility, Art Gallery Problems, Floodlights}
}
  • Refine by Type
  • 6 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 5 2025
  • 1 2021

  • Refine by Author
  • 2 Biniaz, Ahmad
  • 2 Bose, Prosenjit
  • 2 De Carufel, Jean-Lou
  • 2 Orden, David
  • 2 Smid, Michiel
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs

  • Refine by Classification
  • 6 Theory of computation → Computational geometry
  • 1 Mathematics of computing → Discrete mathematics

  • Refine by Keyword
  • 1 Art Gallery Problems
  • 1 Bichromatic
  • 1 Computational Geometry
  • 1 Cover Decomposable Hypergraphs
  • 1 Covering Path
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail