12 Search Results for "Thomas, Antonis"


Document
Improved Hardness-Of-Approximation for Token-Swapping

Authors: Sam Hiken and Nicole Wein

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study the token swapping problem, in which we are given a graph with an initial assignment of one distinct token to each vertex, and a final desired assignment (again with one token per vertex). The goal is to find the minimum length sequence of swaps of adjacent tokens required to get from the initial to the final assignment. The token swapping problem is known to be NP-complete. It is also known to have a polynomial-time 4-approximation algorithm. From the hardness-of-approximation side, it is known to be NP-hard to approximate with a ratio better than 1001/1000. Our main result is an improvement of the approximation ratio of the lower bound: We show that it is NP-hard to approximate with ratio better than 14/13. We then turn our attention to the 0/1-weighted version, in which every token has a weight of either 0 or 1, and the cost of a swap is the sum of the weights of the two participating tokens. Unlike standard token swapping, no constant-factor approximation is known for this version, and we provide an explanation. We prove that 0/1-weighted token swapping is NP-hard to approximate with ratio better than (1-ε) ln(n) for any constant ε > 0. Lastly, we prove two barrier results for the standard (unweighted) token swapping problem. We show that one cannot beat the current best known approximation ratio of 4 using a large class of algorithms which includes all known algorithms, nor can one beat it using a common analysis framework.

Cite as

Sam Hiken and Nicole Wein. Improved Hardness-Of-Approximation for Token-Swapping. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hiken_et_al:LIPIcs.ESA.2025.57,
  author =	{Hiken, Sam and Wein, Nicole},
  title =	{{Improved Hardness-Of-Approximation for Token-Swapping}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{57:1--57:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.57},
  URN =		{urn:nbn:de:0030-drops-245251},
  doi =		{10.4230/LIPIcs.ESA.2025.57},
  annote =	{Keywords: algorithms, token-swapping, hardness-of-approximation, lower-bounds}
}
Document
Time for Timed Monitorability

Authors: Thomas M. Grosen, Sean Kauffman, Kim G. Larsen, and Martin Zimmermann

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Monitoring is an important part of the verification toolbox, in particular in situations where exhaustive verification using, e.g., model-checking is infeasible. The goal of online monitoring is to determine the satisfaction or violation of a specification during runtime, i.e., based on finite execution prefixes. However, not every specification is amenable to monitoring, e.g., properties for which no finite execution can witness satisfaction or violation. Monitorability is the question of whether a given specification is amenable to monitoring, and has been extensively studied in discrete time. Here, we study the monitorability problem for real-time properties expressed as Timed Automata. For specifications given by deterministic Timed Muller Automata, we prove decidability while we show that the problem is undecidable for specifications given by nondeterministic Timed Büchi automata. Furthermore, we refine monitorability to also determine bounds on the number of events as well as the time that must pass before monitoring the property may yield an informative verdict. We prove that for deterministic Timed Muller automata, such bounds can be effectively computed. In contrast we show that for nondeterministic Timed Büchi automata such bounds are not computable.

Cite as

Thomas M. Grosen, Sean Kauffman, Kim G. Larsen, and Martin Zimmermann. Time for Timed Monitorability. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grosen_et_al:LIPIcs.CONCUR.2025.19,
  author =	{Grosen, Thomas M. and Kauffman, Sean and Larsen, Kim G. and Zimmermann, Martin},
  title =	{{Time for Timed Monitorability}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.19},
  URN =		{urn:nbn:de:0030-drops-239690},
  doi =		{10.4230/LIPIcs.CONCUR.2025.19},
  annote =	{Keywords: Monitorability, Monitoring, Timed Automata, MITL}
}
Document
Monitorability for the Modal Mu-Calculus over Systems with Data: From Practice to Theory

Authors: Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Runtime verification consists in checking whether a system satisfies a given specification by observing the execution trace it produces. In the regular setting, the modal μ-calculus provides a versatile formalism for expressing specifications of the control flow of the system. This paper focuses on the data flow and studies an extension of that logic that allows it to express data-dependent properties, identifying fragments that can be verified at runtime and with what correctness guarantees. The logic studied here is closely related with register automata with guessing. That correspondence yields a monitor synthesis algorithm, and a strict hierarchy among the various fragments of the logic, in contrast to the regular setting. We then exhibit a fragment of the logic that can express all monitorable formulae in the logic without greatest fixed-points but not in the full logic, and show this is the best we can get.

Cite as

Luca Aceto, Antonis Achilleos, Duncan Paul Attard, Léo Exibard, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. Monitorability for the Modal Mu-Calculus over Systems with Data: From Practice to Theory. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2025.4,
  author =	{Aceto, Luca and Achilleos, Antonis and Attard, Duncan Paul and Exibard, L\'{e}o and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna and Lehtinen, Karoliina},
  title =	{{Monitorability for the Modal Mu-Calculus over Systems with Data: From Practice to Theory}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.4},
  URN =		{urn:nbn:de:0030-drops-239546},
  doi =		{10.4230/LIPIcs.CONCUR.2025.4},
  annote =	{Keywords: Runtime verification, monitorability, \muHML with data, register automata}
}
Document
Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond ∀*∃*

Authors: Sarah Winter and Martin Zimmermann

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Model-checking HyperLTL, a temporal logic expressing properties of sets of traces with applications to information-flow based security and privacy, has a decidable, but TOWER-complete, model-checking problem. While the classical model-checking algorithm for full HyperLTL is automata-theoretic, more recently, a game-based alternative for the ∀*∃*-fragment has been presented. Here, we employ imperfect information-games to extend the game-based approach to full HyperQPTL, which features arbitrary quantifier prefixes and quantification over propositions and can express every ω-regular hyperproperty. As a byproduct of our game-based algorithm, we obtain finite-state implementations of Skolem functions via transducers with lookahead that explain satisfaction or violation of HyperQPTL properties.

Cite as

Sarah Winter and Martin Zimmermann. Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond ∀*∃*. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 37:1-37:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{winter_et_al:LIPIcs.CONCUR.2025.37,
  author =	{Winter, Sarah and Zimmermann, Martin},
  title =	{{Prophecies All the Way: Game-Based Model-Checking for HyperQPTL Beyond \forall*\exists*}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{37:1--37:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.37},
  URN =		{urn:nbn:de:0030-drops-239872},
  doi =		{10.4230/LIPIcs.CONCUR.2025.37},
  annote =	{Keywords: HyperLTL, HyperQPTL, model-checking games, prophecies}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Optimal Hopsets

Authors: Michael Dinitz, Ama Koranteng, and Yasamin Nazari

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a given graph G, a hopset H with hopbound β and stretch α is a set of edges such that between every pair of vertices u and v, there is a path with at most β hops in G ∪ H that approximates the distance between u and v up to a multiplicative stretch of α. Hopsets have found a wide range of applications for distance-based problems in various computational models since the 90s. More recently, there has been significant interest in understanding these fundamental objects from an existential and structural perspective. But all of this work takes a worst-case (or existential) point of view: How many edges do we need to add to satisfy a given hopbound and stretch requirement for any input graph? We initiate the study of the natural optimization variant of this problem: given a specific graph instance, what is the minimum number of edges that satisfy the hopbound and stretch requirements? We give approximation algorithms for a generalized hopset problem which, when combined with known existential bounds, lead to different approximation guarantees for various regimes depending on hopbound, stretch, and directed vs. undirected inputs. We complement our upper bounds with a lower bound that implies Label Cover hardness for directed hopsets and shortcut sets with hopbound at least 3.

Cite as

Michael Dinitz, Ama Koranteng, and Yasamin Nazari. Approximation Algorithms for Optimal Hopsets. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 69:1-69:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dinitz_et_al:LIPIcs.ICALP.2025.69,
  author =	{Dinitz, Michael and Koranteng, Ama and Nazari, Yasamin},
  title =	{{Approximation Algorithms for Optimal Hopsets}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{69:1--69:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.69},
  URN =		{urn:nbn:de:0030-drops-234464},
  doi =		{10.4230/LIPIcs.ICALP.2025.69},
  annote =	{Keywords: Hopsets, Approximation Algorithms}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Probabilistic and Causal Satisfiability: Constraining the Model

Authors: Markus Bläser, Julian Dörfler, Maciej Liśkiewicz, and Benito van der Zander

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the complexity of satisfiability problems in probabilistic and causal reasoning. Given random variables X₁, X₂,… over finite domains, the basic terms are probabilities of propositional formulas over atomic events X_i = x_i, such as ℙ(X₁ = x₁) or ℙ(X₁ = x₁ ∨ X₂ = x₂). The basic terms can be combined using addition (yielding linear terms) or multiplication (polynomial terms). The probabilistic satisfiability problem asks whether a joint probability distribution satisfies a Boolean combination of (in)equalities over such terms. Fagin et al. [Fagin et al., 1990] showed that for basic and linear terms, this problem is NP-complete, making it no harder than Boolean satisfiability, while Mossé et al. [Mossé et al., 2022] proved that for polynomial terms, it is complete for the existential theory of the reals. Pearl’s Causal Hierarchy (PCH) extends the probabilistic setting with interventional and counterfactual reasoning, enriching the expressiveness of the languages. However, Mossé et al. [Mossé et al., 2022] found that the complexity of satisfiability remains unchanged. Van der Zander et al. [van der Zander et al., 2023] showed that introducing a marginalization operator to languages induces a significant increase in complexity. We extend this line of work by adding two new dimensions to the problem by constraining the models. First, we fix the graph structure of the underlying structural causal model, motivated by settings like Pearl’s do-calculus, and give a nearly complete landscape across different arithmetics and PCH levels. Second, we study small models. While earlier work showed that satisfiable instances admit polynomial-size models, this is no longer guaranteed with compact marginalization. We characterize the complexities of satisfiability under small-model constraints across different settings.

Cite as

Markus Bläser, Julian Dörfler, Maciej Liśkiewicz, and Benito van der Zander. Probabilistic and Causal Satisfiability: Constraining the Model. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 144:1-144:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{blaser_et_al:LIPIcs.ICALP.2025.144,
  author =	{Bl\"{a}ser, Markus and D\"{o}rfler, Julian and Li\'{s}kiewicz, Maciej and van der Zander, Benito},
  title =	{{Probabilistic and Causal Satisfiability: Constraining the Model}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{144:1--144:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.144},
  URN =		{urn:nbn:de:0030-drops-235214},
  doi =		{10.4230/LIPIcs.ICALP.2025.144},
  annote =	{Keywords: Existential theory of the real numbers, Computational complexity, Probabilistic logic, Structural Causal Models}
}
Document
The Complexity of Deciding Characteristic Formulae in Van Glabbeek’s Branching-Time Spectrum

Authors: Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Characteristic formulae give a complete logical description of the behaviour of processes modulo some chosen notion of behavioural semantics. They allow one to reduce equivalence or preorder checking to model checking, and are exactly the formulae in the modal logics characterizing classic behavioural equivalences and preorders for which model checking can be reduced to equivalence or preorder checking. This paper studies the complexity of determining whether a formula is characteristic for some process in each of the logics providing modal characterizations of the simulation-based semantics in van Glabbeek’s branching-time spectrum. Since characteristic formulae in each of those logics are exactly the satisfiable and prime ones, this article presents complexity results for the satisfiability and primality problems, and investigates the boundary between modal logics for which those problems can be solved in polynomial time and those for which they become computationally hard. Amongst other contributions, this article also studies the complexity of constructing characteristic formulae in the modal logics characterizing simulation-based semantics, both when such formulae are presented in explicit form and via systems of equations.

Cite as

Luca Aceto, Antonis Achilleos, Aggeliki Chalki, and Anna Ingólfsdóttir. The Complexity of Deciding Characteristic Formulae in Van Glabbeek’s Branching-Time Spectrum. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2025.26,
  author =	{Aceto, Luca and Achilleos, Antonis and Chalki, Aggeliki and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{The Complexity of Deciding Characteristic Formulae in Van Glabbeek’s Branching-Time Spectrum}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.26},
  URN =		{urn:nbn:de:0030-drops-227836},
  doi =		{10.4230/LIPIcs.CSL.2025.26},
  annote =	{Keywords: Characteristic formulae, prime formulae, bisimulation, simulation relations, modal logics, complexity theory, satisfiability}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Exponential Lower Bounds for History-Based Simplex Pivot Rules on Abstract Cubes

Authors: Antonis Thomas

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
The behavior of the simplex algorithm is a widely studied subject. Specifically, the question of the existence of a polynomial pivot rule for the simplex algorithm is of major importance. Here, we give exponential lower bounds for three history-based pivot rules. Those rules decide their next step based on memory of the past steps. In particular, we study Zadeh's least entered rule, Johnson's least-recently basic rule and Cunningham's least-recently considered (or round-robin) rule. We give exponential lower bounds on Acyclic Unique Sink Orientations of the abstract cube, for all of these pivot rules. For Johnson's rule our bound is the first superpolynomial one in any context; for Zadeh's it is the first one for AUSO. Those two are our main results.

Cite as

Antonis Thomas. Exponential Lower Bounds for History-Based Simplex Pivot Rules on Abstract Cubes. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 69:1-69:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{thomas:LIPIcs.ESA.2017.69,
  author =	{Thomas, Antonis},
  title =	{{Exponential Lower Bounds for History-Based Simplex Pivot Rules on Abstract Cubes}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{69:1--69:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.69},
  URN =		{urn:nbn:de:0030-drops-78505},
  doi =		{10.4230/LIPIcs.ESA.2017.69},
  annote =	{Keywords: pivot rule, lower bound, exponential, unique sink orientation, zadeh}
}
Document
The Niceness of Unique Sink Orientations

Authors: Bernd Gärtner and Antonis Thomas

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
Random Edge is the most natural randomized pivot rule for the simplex algorithm. Considerable progress has been made recently towards fully understanding its behavior. Back in 2001, Welzl introduced the concepts of reachmaps and niceness of Unique Sink Orientations (USO), in an effort to better understand the behavior of Random Edge. In this paper, we initiate the systematic study of these concepts. We settle the questions that were asked by Welzl about the niceness of (acyclic) USO. Niceness implies natural upper bounds for Random Edge and we provide evidence that these are tight or almost tight in many interesting cases. Moreover, we show that Random Edge is polynomial on at least n^{Omega(2^n)} many (possibly cyclic) USO. As a bonus, we describe a derandomization of Random Edge which achieves the same asymptotic upper bounds with respect to niceness.

Cite as

Bernd Gärtner and Antonis Thomas. The Niceness of Unique Sink Orientations. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gartner_et_al:LIPIcs.APPROX-RANDOM.2016.30,
  author =	{G\"{a}rtner, Bernd and Thomas, Antonis},
  title =	{{The Niceness of Unique Sink Orientations}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{30:1--30:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.30},
  URN =		{urn:nbn:de:0030-drops-66538},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.30},
  annote =	{Keywords: random edge, unique sink orientation, random walk, reachmap, niceness}
}
Document
Approximation and Hardness of Token Swapping

Authors: Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and Takeaki Uno

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
Given a graph G=(V,E) with V={1,...,n}, we place on every vertex a token T_1,...,T_n. A swap is an exchange of tokens on adjacent vertices. We consider the algorithmic question of finding a shortest sequence of swaps such that token T_i is on vertex i. We are able to achieve essentially matching upper and lower bounds, for exact algorithms and approximation algorithms. For exact algorithms, we rule out any 2^{o(n)} algorithm under the ETH. This is matched with a simple 2^{O(n*log(n))} algorithm based on a breadth-first search in an auxiliary graph. We show one general 4-approximation and show APX-hardness. Thus, there is a small constant delta > 1 such that every polynomial time approximation algorithm has approximation factor at least delta. Our results also hold for a generalized version, where tokens and vertices are colored. In this generalized version each token must go to a vertex with the same color.

Cite as

Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and Takeaki Uno. Approximation and Hardness of Token Swapping. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{miltzow_et_al:LIPIcs.ESA.2016.66,
  author =	{Miltzow, Tillmann and Narins, Lothar and Okamoto, Yoshio and Rote, G\"{u}nter and Thomas, Antonis and Uno, Takeaki},
  title =	{{Approximation and Hardness of Token Swapping}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.66},
  URN =		{urn:nbn:de:0030-drops-64084},
  doi =		{10.4230/LIPIcs.ESA.2016.66},
  annote =	{Keywords: token swapping, minimum generator sequence, graph theory, NP-hardness, approximation algorithms}
}
Document
The Complexity of Recognizing Unique Sink Orientations

Authors: Bernd Gärtner and Antonis Thomas

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
Given a Boolean Circuit with n inputs and n outputs, we want to decide if it represents a Unique Sink Orientation (USO). USOs are useful combinatorial objects that serve as abstraction of many relevant optimization problems. We prove that recognizing a USO is coNP-complete. However, the situation appears to be more complicated for recognizing acyclic USOs. Firstly, we give a construction to prove that there exist cyclic USOs where the smallest cycle is of superpolynomial size. This implies that the straightforward representation of a cycle (i.e. by a list of vertices) does not make up for a coNP certificate. Inspired by this fact, we investigate the connection of recognizing an acyclic USO to PSPACE and we prove that the problem is PSPACE-complete.

Cite as

Bernd Gärtner and Antonis Thomas. The Complexity of Recognizing Unique Sink Orientations. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 341-353, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{gartner_et_al:LIPIcs.STACS.2015.341,
  author =	{G\"{a}rtner, Bernd and Thomas, Antonis},
  title =	{{The Complexity of Recognizing Unique Sink Orientations}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{341--353},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.341},
  URN =		{urn:nbn:de:0030-drops-49252},
  doi =		{10.4230/LIPIcs.STACS.2015.341},
  annote =	{Keywords: complexity, recognizing, unique sink orientations, coNP, PSPACE}
}
  • Refine by Type
  • 12 Document/PDF
  • 8 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 1 2024
  • 1 2017
  • 2 2016
  • 1 2015

  • Refine by Author
  • 4 Thomas, Antonis
  • 2 Aceto, Luca
  • 2 Achilleos, Antonis
  • 2 Gärtner, Bernd
  • 2 Ingólfsdóttir, Anna
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs
  • 1 TGDK

  • Refine by Classification
  • 4 Theory of computation → Modal and temporal logics
  • 3 Theory of computation → Logic and verification
  • 2 Theory of computation → Complexity theory and logic
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Temporal reasoning
  • Show More...

  • Refine by Keyword
  • 2 unique sink orientation
  • 1 Approximation Algorithms
  • 1 Characteristic formulae
  • 1 Computational complexity
  • 1 Continuous query processing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail