50 Search Results for "Tolmach, Andrew"


Volume

LIPIcs, Volume 141

10th International Conference on Interactive Theorem Proving (ITP 2019)

ITP 2019, September 9-12, 2019, Portland, OR, USA

Editors: John Harrison, John O'Leary, and Andrew Tolmach

Document
A Formal Proof of Complexity Bounds on Diophantine Equations

Authors: Jonas Bayer and Marco David

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We present a universal construction of Diophantine equations with bounded complexity in Isabelle/HOL. This is a formalization of our own work in number theory [Jonas Bayer et al., 2025]. Hilbert’s Tenth Problem was answered negatively by Yuri Matiyasevich, who showed that there is no general algorithm to decide whether an arbitrary Diophantine equation has a solution. However, the problem remains open when generalized to the field of rational numbers, or contrarily, when restricted to Diophantine equations with bounded complexity, characterized by the number of variables ν and the degree δ. If every Diophantine set can be represented within the bounds (ν, δ), we say that this pair is universal, and it follows that the corresponding class of equations is undecidable. In a separate mathematics article, we have determined the first non-trivial universal pair for the case of integer unknowns. In this paper, we contribute a formal verification of this new result. In doing so, we markedly extend the Isabelle AFP entry on multivariate polynomials [Christian Sternagel et al., 2010], formalize parts of a number theory textbook [Melvyn B. Nathanson, 1996], and develop classical theory on Diophantine equations [Yuri Matiyasevich and Julia Robinson, 1975] in Isabelle. In addition, our work includes metaprogramming infrastructure designed to efficiently handle complex definitions of multivariate polynomials. Our mathematical draft has been formalized while the mathematical research was ongoing, and benefited largely from the help of the theorem prover. We reflect on how the close collaboration between mathematician and computer is an uncommon but promising modus operandi.

Cite as

Jonas Bayer and Marco David. A Formal Proof of Complexity Bounds on Diophantine Equations. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bayer_et_al:LIPIcs.ITP.2025.3,
  author =	{Bayer, Jonas and David, Marco},
  title =	{{A Formal Proof of Complexity Bounds on Diophantine Equations}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.3},
  URN =		{urn:nbn:de:0030-drops-246023},
  doi =		{10.4230/LIPIcs.ITP.2025.3},
  annote =	{Keywords: Diophantine Equations, Hilbert’s Tenth Problem, Isabelle/HOL}
}
Document
Verifying an Efficient Algorithm for Computing Bernoulli Numbers

Authors: Manuel Eberl and Peter Lammich

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
The Bernoulli numbers B_k are a sequence of rational numbers that is ubiquitous in mathematics, but difficult to compute efficiently (compared to e.g. approximating π). In 2008, Harvey gave the currently fastest known practical way for computing them: his algorithm computes B_k mod p in time O(p log^{1 + o(1)} p). By doing this for O(k) many small primes p in parallel and then combining the results with the Chinese Remainder Theorem, one recovers the value of B_k as a rational number in O(k² log^{2 + o(1)} k) time. One advantage of this approach is that the expensive part of the algorithm is highly parallelisable and has very low memory requirements. This algorithm still holds the world record with its computation of B_{10⁸}. We give a verified efficient LLVM implementation of this algorithm. This was achieved by formalising the necessary mathematical background theory in Isabelle/HOL, proving an abstract version of the algorithm correct, and refining this abstract version down to LLVM using Lammich’s Isabelle-LLVM framework, including many low-level optimisations. The performance of the resulting LLVM code is comparable with Harvey’s original unverified and hand-optimised C++ implementation.

Cite as

Manuel Eberl and Peter Lammich. Verifying an Efficient Algorithm for Computing Bernoulli Numbers. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 35:1-35:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eberl_et_al:LIPIcs.ITP.2025.35,
  author =	{Eberl, Manuel and Lammich, Peter},
  title =	{{Verifying an Efficient Algorithm for Computing Bernoulli Numbers}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{35:1--35:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.35},
  URN =		{urn:nbn:de:0030-drops-246331},
  doi =		{10.4230/LIPIcs.ITP.2025.35},
  annote =	{Keywords: Bernoulli numbers, LLVM, verification, Isabelle, Chinese remainder theorem, modular arithmetic, Montgomery arithmetic}
}
Document
Verifying Datalog Reasoning with Lean

Authors: Johannes Tantow, Lukas Gerlach, Stephan Mennicke, and Markus Krötzsch

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Datalog is an essential logical rule language with many applications, and modern rule engines compute logical consequences for Datalog with high performance and scalability. While Datalog is rather simple and, in principle, explainable by design, such sophisticated implementations and optimizations are hard to verify. We therefore propose a certificate-based approach to validate results of Datalog reasoners in a formally verified checker for Datalog proofs. Using the proof assistant Lean, we implement such a checker and verify its correctness against direct formalizations of the Datalog semantics. We propose two JSON encodings for Datalog proofs: one using the widely supported Datalog proof trees, and one using directed acyclic graphs for succinctness. To evaluate the practical feasibility and performance of our approach, we validate proofs that we obtain by converting derivation traces of an existing Datalog reasoner into our tool-independent format.

Cite as

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, and Markus Krötzsch. Verifying Datalog Reasoning with Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{tantow_et_al:LIPIcs.ITP.2025.36,
  author =	{Tantow, Johannes and Gerlach, Lukas and Mennicke, Stephan and Kr\"{o}tzsch, Markus},
  title =	{{Verifying Datalog Reasoning with Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.36},
  URN =		{urn:nbn:de:0030-drops-246342},
  doi =		{10.4230/LIPIcs.ITP.2025.36},
  annote =	{Keywords: Certifying Algorithms, Datalog, Formal Verification}
}
Document
Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Authors: Jan van Brügge, Andrei Popescu, and Dmitriy Traytel

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or programming languages, in which variables are bound. It has been instrumental to major verification successes, such as Gödel’s incompleteness theorems. However, the existing tooling is not compositional. In particular, it does not support nested recursion, linear binding patterns, or infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical advancements that overcome these limitations through a modular approach using the concept of map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional package for binding-aware datatypes in Isabelle/HOL, called MrBNF. We describe the journey from the user specification to the end-product types, constants and theorems the tool generates. We validate MrBNF in two formalization case studies that so far were out of reach of nominal approaches: (1) Mazza’s isomorphism between the finitary and the infinitary affine λ-calculus, and (2) the POPLmark 2B challenge, which involves non-free binders for linear pattern matching.

Cite as

Jan van Brügge, Andrei Popescu, and Dmitriy Traytel. Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanbrugge_et_al:LIPIcs.ITP.2025.11,
  author =	{van Br\"{u}gge, Jan and Popescu, Andrei and Traytel, Dmitriy},
  title =	{{Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.11},
  URN =		{urn:nbn:de:0030-drops-246091},
  doi =		{10.4230/LIPIcs.ITP.2025.11},
  annote =	{Keywords: syntax with bindings, datatypes, inductive predicates, Isabelle/HOL}
}
Document
Automatic Goal Clone Detection in Rocq

Authors: Ali Ghanbari

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Proof engineering in Rocq is a labor-intensive process, and as proof developments grow in size, redundancy and maintainability become challenges. One such redundancy is goal cloning, i.e., proving α-equivalent goals multiple times, leading to wasted effort and bloated proof scripts. In this paper, we introduce clone-finder, a novel technique for detecting goal clones in Rocq proofs. By leveraging the formal notion of α-equivalence for Gallina terms, clone-finder systematically identifies duplicated proof goals across large Rocq codebases. We evaluate clone-finder on 40 real-world Rocq projects from the CoqGym dataset. Our results reveal that each project contains an average of 27.73 instances of goal clone. We observed that the clones can be categorized as either exact goal duplication, generalization, or α-equivalent goals with different proofs, each signifying varying levels duplicate effort. Our findings highlight significant untapped potential for proof reuse in Rocq-based formal verification projects, paving the way for future improvements in automated proof engineering.

Cite as

Ali Ghanbari. Automatic Goal Clone Detection in Rocq. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghanbari:LIPIcs.ECOOP.2025.12,
  author =	{Ghanbari, Ali},
  title =	{{Automatic Goal Clone Detection in Rocq}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.12},
  URN =		{urn:nbn:de:0030-drops-233055},
  doi =		{10.4230/LIPIcs.ECOOP.2025.12},
  annote =	{Keywords: Clone Detection, Goal, Proof, Rocq, Gallina}
}
Document
Formal Verification in Solidity and Move: Insights from a Comparative Analysis

Authors: Massimo Bartoletti, Silvia Crafa, and Enrico Lipparini

Published in: OASIcs, Volume 129, 6th International Workshop on Formal Methods for Blockchains (FMBC 2025)


Abstract
Formal verification plays a crucial role in making smart contracts safer, being able to find bugs or to guarantee their absence, as well as checking whether the business logic is correctly implemented. For Solidity, even though there already exist several mature verification tools, the semantical quirks of the language can make verification quite hard in practice. Move, on the other hand, has been designed with security and verification in mind, and it has been accompanied since its early stages by a formal verification tool, the Move Prover. In this paper, we investigate through a comparative analysis: 1) how the different designs of the two contract languages impact verification, and 2) what is the state-of-the-art of verification tools for the two languages, and how do they compare on three paradigmatic use cases. Our investigation is supported by an open dataset of verification tasks performed in Certora and in the Aptos Move Prover.

Cite as

Massimo Bartoletti, Silvia Crafa, and Enrico Lipparini. Formal Verification in Solidity and Move: Insights from a Comparative Analysis. In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025). Open Access Series in Informatics (OASIcs), Volume 129, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bartoletti_et_al:OASIcs.FMBC.2025.3,
  author =	{Bartoletti, Massimo and Crafa, Silvia and Lipparini, Enrico},
  title =	{{Formal Verification in Solidity and Move: Insights from a Comparative Analysis}},
  booktitle =	{6th International Workshop on Formal Methods for Blockchains (FMBC 2025)},
  pages =	{3:1--3:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-371-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{129},
  editor =	{Marmsoler, Diego and Xu, Meng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2025.3},
  URN =		{urn:nbn:de:0030-drops-230302},
  doi =		{10.4230/OASIcs.FMBC.2025.3},
  annote =	{Keywords: Smart contracts, Solidity, Move, Verification, Blockchain}
}
Document
Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model

Authors: Andrew Tolmach, Chris Chhak, and Sean Anderson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We propose a concrete ("pointer as integer") memory semantics for C that supports verified compilation to a target environment having simple "public vs. private" data protection based on tagging or sandboxing (such as the WebAssembly virtual machine). Our semantics gives definition to a range of legacy programming idioms that cause undefined behavior in standard C, and are not covered by existing verified compilers, but that often work in practice. Compiler correctness in this context implies that target programs are secure against all control-flow attacks (although not against data-only attacks). To avoid tying our semantics too closely to particular compiler implementation choices, it is parameterized by a novel form of oracle that non-deterministically chooses the addresses of stack and heap allocations. As a proof-of-concept, we formalize a small RTL-like language and verify two-way refinement for a compiler from this language to a low-level machine and runtime system with hardware tagging. Our Coq formalization and proofs are provided as supplementary material.

Cite as

Andrew Tolmach, Chris Chhak, and Sean Anderson. Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{tolmach_et_al:LIPIcs.ITP.2024.36,
  author =	{Tolmach, Andrew and Chhak, Chris and Anderson, Sean},
  title =	{{Defining and Preserving More C Behaviors: Verified Compilation Using a Concrete Memory Model}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.36},
  URN =		{urn:nbn:de:0030-drops-207643},
  doi =		{10.4230/LIPIcs.ITP.2024.36},
  annote =	{Keywords: Compiler verification, C language semantics, Coq proof assistant}
}
Document
Eelco Visser: The Oregon Connection

Authors: Andrew Tolmach

Published in: OASIcs, Volume 109, Eelco Visser Commemorative Symposium (EVCS 2023)


Abstract
This paper shares some memories of Eelco gathered over the past 25 years as a colleague and friend, and reflects on the nature of modern international collaborations.

Cite as

Andrew Tolmach. Eelco Visser: The Oregon Connection. In Eelco Visser Commemorative Symposium (EVCS 2023). Open Access Series in Informatics (OASIcs), Volume 109, pp. 27:1-27:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{tolmach:OASIcs.EVCS.2023.27,
  author =	{Tolmach, Andrew},
  title =	{{Eelco Visser: The Oregon Connection}},
  booktitle =	{Eelco Visser Commemorative Symposium (EVCS 2023)},
  pages =	{27:1--27:6},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-267-9},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{109},
  editor =	{L\"{a}mmel, Ralf and Mosses, Peter D. and Steimann, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.EVCS.2023.27},
  URN =		{urn:nbn:de:0030-drops-177971},
  doi =		{10.4230/OASIcs.EVCS.2023.27},
  annote =	{Keywords: Eelco Visser, Stratego, scope graphs}
}
Document
Complete Volume
LIPIcs, Volume 141, ITP'19, Complete Volume

Authors: John Harrison, John O'Leary, and Andrew Tolmach

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
LIPIcs, Volume 141, ITP'19, Complete Volume

Cite as

10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Proceedings{harrison_et_al:LIPIcs.ITP.2019,
  title =	{{LIPIcs, Volume 141, ITP'19, Complete Volume}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019},
  URN =		{urn:nbn:de:0030-drops-112972},
  doi =		{10.4230/LIPIcs.ITP.2019},
  annote =	{Keywords: Theory of computation, Logic}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: John Harrison, John O'Leary, and Andrew Tolmach

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 0:i-0:xiv, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{harrison_et_al:LIPIcs.ITP.2019.0,
  author =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{0:i--0:xiv},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.0},
  URN =		{urn:nbn:de:0030-drops-110550},
  doi =		{10.4230/LIPIcs.ITP.2019.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
A Million Lines of Proof About a Moving Target (Invited Talk)

Authors: June Andronick

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
In the last ten years, we have been porting, maintaining, and evolving the world’s largest proof base, the formal proof in Isabelle/HOL of the seL4 microkernel. But actually, there is no such thing as "the seL4 proof"; there are a number of proofs (functional correctness, binary translation validation, integrity and confidentiality proofs, etc) about a number of instances of seL4 (depending on the hardware platform it runs on, the features it includes, the extensions it supports). We will give an overview of the current state of these proofs, and, importantly, the challenges we face in keeping to maintain, evolve and extend them, and the processes we have put in place to manage their dependence on the evolving implementation.

Cite as

June Andronick. A Million Lines of Proof About a Moving Target (Invited Talk). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{andronick:LIPIcs.ITP.2019.1,
  author =	{Andronick, June},
  title =	{{A Million Lines of Proof About a Moving Target}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.1},
  URN =		{urn:nbn:de:0030-drops-110567},
  doi =		{10.4230/LIPIcs.ITP.2019.1},
  annote =	{Keywords: Proof maintentance, proof evolution, seL4, Isabelle/HOL}
}
Document
Invited Talk
What Makes a Mathematician Tick? (Invited Talk)

Authors: Kevin Buzzard

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Formalised mathematics has a serious image problem in mathematics departments. Mathematicians working in "mainstream" areas such as modern algebra, analysis, geometry etc have absolutely no desire to work formally, it slows them down and they cannot see the point. The mathematical community has its own methods for deciding whether a proof (in pdf format) is correct or not; these methods rely on the views of a cabal of experts - our high priests. Our proof of the odd order theorem is "John Thompson got a Fields Medal for the work". This proof is of a rather different nature to the formalised proof of Gonthier et al. Our methods are arcane and mysterious; there is also ample evidence that they are, in general, extremely accurate when it comes to the important stuff. I will talk about my attempts, as a "mainstream mathematician", to introduce formalised mathematics to my community.

Cite as

Kevin Buzzard. What Makes a Mathematician Tick? (Invited Talk). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{buzzard:LIPIcs.ITP.2019.2,
  author =	{Buzzard, Kevin},
  title =	{{What Makes a Mathematician Tick?}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.2},
  URN =		{urn:nbn:de:0030-drops-110576},
  doi =		{10.4230/LIPIcs.ITP.2019.2},
  annote =	{Keywords: Formalization of mathematics}
}
Document
Invited Talk
An Increasing Need for Formality (Invited Talk)

Authors: Martin Dixon

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
The talk will touch on a number of practical opportunities for formal modeling and methods that Intel sees in HW security research including: instruction sets; the proliferation of programmable agents within SoC’s; and negative space testing.

Cite as

Martin Dixon. An Increasing Need for Formality (Invited Talk). In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dixon:LIPIcs.ITP.2019.3,
  author =	{Dixon, Martin},
  title =	{{An Increasing Need for Formality}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.3},
  URN =		{urn:nbn:de:0030-drops-110588},
  doi =		{10.4230/LIPIcs.ITP.2019.3},
  annote =	{Keywords: Hardware security, formal modeling, instruction sets, SoC’s, negative space testing}
}
Document
A Verified Compositional Algorithm for AI Planning

Authors: Mohammad Abdulaziz, Charles Gretton, and Michael Norrish

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We report on our HOL4 verification of an AI planning algorithm. The algorithm is compositional in the following sense: a planning problem is divided into multiple smaller abstractions, then each of the abstractions is solved, and finally the abstractions' solutions are composed into a solution for the given problem. Formalising the algorithm, which was already quite well understood, revealed nuances in its operation which could lead to computing buggy plans. The formalisation also revealed that the algorithm can be presented more generally, and can be applied to systems with infinite states and actions, instead of only finite ones. Our formalisation extends an earlier model for slightly simpler transition systems, and demonstrates another step towards formal treatments of more and more of the algorithms and reasoning used in AI planning, as well as model checking.

Cite as

Mohammad Abdulaziz, Charles Gretton, and Michael Norrish. A Verified Compositional Algorithm for AI Planning. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{abdulaziz_et_al:LIPIcs.ITP.2019.4,
  author =	{Abdulaziz, Mohammad and Gretton, Charles and Norrish, Michael},
  title =	{{A Verified Compositional Algorithm for AI Planning}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.4},
  URN =		{urn:nbn:de:0030-drops-110596},
  doi =		{10.4230/LIPIcs.ITP.2019.4},
  annote =	{Keywords: AI Planning, Compositional Algorithms, Algorithm Verification, Transition Systems}
}
  • Refine by Type
  • 49 Document/PDF
  • 6 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 6 2025
  • 1 2024
  • 1 2023
  • 40 2019
  • 2 2016

  • Refine by Author
  • 7 Tolmach, Andrew
  • 4 Lammich, Peter
  • 3 Visser, Eelco
  • 2 Bach Poulsen, Casper
  • 2 Bayer, Jonas
  • Show More...

  • Refine by Series/Journal
  • 46 LIPIcs
  • 2 OASIcs
  • 1 DARTS

  • Refine by Classification
  • 11 Theory of computation → Logic and verification
  • 8 Software and its engineering → Formal software verification
  • 8 Theory of computation → Type theory
  • 5 Theory of computation → Interactive proof systems
  • 4 Security and privacy → Logic and verification
  • Show More...

  • Refine by Keyword
  • 7 Coq
  • 7 Isabelle/HOL
  • 6 Isabelle
  • 4 Lean
  • 3 scope graphs
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail