7 Search Results for "Xiang, Yong"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Analysis of Points of Interests Recommended for Leisure Walk Descriptions

Authors: Ehsan Hamzei, Thi Minh Hoai Bui, Martin Tomko, and Stephan Winter

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Leisure walking is a physical activity where locomotion through a natural or even urban environment is the goal in itself, e.g., in pursuit of health and wellbeing. In contrast to destination-oriented walks that are focused on navigation efficiency (i.e., shortest or simplest walk from source to destination), leisure walks emphasize experiencing the environment, engaging in activities, and discovering places that may be off route, or intermediate destinations en-route, summarily called points of interest (POIs). POIs are key for recommending leisure walks, yet a detailed analysis of POIs in the context of leisure walking is missing in the literature. This study extracts and annotates POIs of leisure walking recommendations available in WalkingMaps.com.au, creating an annotated dataset to address this research gap and provide a first analysis of leisure walking descriptions. We classify POIs using the verbal description provided in the dataset, match them with data available in OpenStreetMap (OSM), and compare the POIs with nearby alternatives in OSM. Our analysis reveals thematic and spatial patterns in POI selection, offering a machine learning approach to model POI choices for leisure walks. We further evaluate the availability of rich data in OSM for future automated leisure walking recommendation. This study contributes to automated systems for recommending leisure walks, tailoring suggestions based on available information in the spatial open data, and presents an annotated dataset to facilitate future research in this field.

Cite as

Ehsan Hamzei, Thi Minh Hoai Bui, Martin Tomko, and Stephan Winter. Analysis of Points of Interests Recommended for Leisure Walk Descriptions. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hamzei_et_al:LIPIcs.GIScience.2025.5,
  author =	{Hamzei, Ehsan and Bui, Thi Minh Hoai and Tomko, Martin and Winter, Stephan},
  title =	{{Analysis of Points of Interests Recommended for Leisure Walk Descriptions}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.5},
  URN =		{urn:nbn:de:0030-drops-238341},
  doi =		{10.4230/LIPIcs.GIScience.2025.5},
  annote =	{Keywords: leisure walks, points of interest, places, platial information}
}
Document
GSOHC: Global Synchronization Optimization in Heterogeneous Computing

Authors: Soumik Kumar Basu and Jyothi Vedurada

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
The use of heterogeneous systems has become widespread and popular in the past decade with more than one type of processor, such as CPUs, GPUs (Graphics Processing Units), and FPGAs (Field Programmable Gate Arrays) etc. A wide range of applications use both CPU and GPU to leverage the benefits of their unique features and strengths. Therefore, collaborative computation between CPU and GPU is essential to achieve high program performance. However, poorly placed global synchronization barriers and synchronous memory transfers are the main bottlenecks to enhanced program performance, preventing CPU and GPU computations from overlapping. Based on this observation, we propose a new optimization technique called hetero-sync motion that can relocate such barrier instructions to new locations, resulting in improved performance in CPU-GPU heterogeneous programs. Further, we propose GSOHC, a compiler analysis and optimization framework that automatically finds opportunities for hetero-sync motion in the input program and then performs code transformation to apply the optimization. Our static analysis is a context-sensitive, flow-sensitive inter-procedural data-flow analysis with three phases to identify the optimization opportunities precisely. We have implemented GSOHC using LLVM/Clang infrastructure. On A4000, P100 and A100 GPUs, our optimization achieves speedups of up to 1.8x, 1.9x and 1.9x over the baseline, respectively.

Cite as

Soumik Kumar Basu and Jyothi Vedurada. GSOHC: Global Synchronization Optimization in Heterogeneous Computing. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 21:1-21:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kumarbasu_et_al:LIPIcs.ECOOP.2025.21,
  author =	{Kumar Basu, Soumik and Vedurada, Jyothi},
  title =	{{GSOHC: Global Synchronization Optimization in Heterogeneous Computing}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{21:1--21:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.21},
  URN =		{urn:nbn:de:0030-drops-232949},
  doi =		{10.4230/LIPIcs.ECOOP.2025.21},
  annote =	{Keywords: Static Analysis, Synchronization, CPU-GPU, Heterogeneous Computing, Parallelization}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
Document
Survey
Knowledge Graph Embeddings: Open Challenges and Opportunities

Authors: Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
While Knowledge Graphs (KGs) have long been used as valuable sources of structured knowledge, in recent years, KG embeddings have become a popular way of deriving numeric vector representations from them, for instance, to support knowledge graph completion and similarity search. This study surveys advances as well as open challenges and opportunities in this area. For instance, the most prominent embedding models focus primarily on structural information. However, there has been notable progress in incorporating further aspects, such as semantics, multi-modal, temporal, and multilingual features. Most embedding techniques are assessed using human-curated benchmark datasets for the task of link prediction, neglecting other important real-world KG applications. Many approaches assume a static knowledge graph and are unable to account for dynamic changes. Additionally, KG embeddings may encode data biases and lack interpretability. Overall, this study provides an overview of promising research avenues to learn improved KG embeddings that can address a more diverse range of use cases.

Cite as

Russa Biswas, Lucie-Aimée Kaffee, Michael Cochez, Stefania Dumbrava, Theis E. Jendal, Matteo Lissandrini, Vanessa Lopez, Eneldo Loza Mencía, Heiko Paulheim, Harald Sack, Edlira Kalemi Vakaj, and Gerard de Melo. Knowledge Graph Embeddings: Open Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 4:1-4:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{biswas_et_al:TGDK.1.1.4,
  author =	{Biswas, Russa and Kaffee, Lucie-Aim\'{e}e and Cochez, Michael and Dumbrava, Stefania and Jendal, Theis E. and Lissandrini, Matteo and Lopez, Vanessa and Menc{\'\i}a, Eneldo Loza and Paulheim, Heiko and Sack, Harald and Vakaj, Edlira Kalemi and de Melo, Gerard},
  title =	{{Knowledge Graph Embeddings: Open Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:32},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.4},
  URN =		{urn:nbn:de:0030-drops-194783},
  doi =		{10.4230/TGDK.1.1.4},
  annote =	{Keywords: Knowledge Graphs, KG embeddings, Link prediction, KG applications}
}
Document
Realizing Video Analytic Service in the Fog-Based Infrastructure-Less Environments

Authors: Qiushi Zheng, Jiong Jin, Tiehua Zhang, Longxiang Gao, and Yong Xiang

Published in: OASIcs, Volume 80, 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)


Abstract
Deep learning has unleashed the great potential in many fields and now is the most significant facilitator for video analytics owing to its capability to providing more intelligent services in a complex scenario. Meanwhile, the emergence of fog computing has brought unprecedented opportunities to provision intelligence services in infrastructure-less environments like remote national parks and rural farms. However, most of the deep learning algorithms are computationally intensive and impossible to be executed in such environments due to the needed supports from the cloud. In this paper, we develop a video analytic framework, which is tailored particularly for the fog devices to realize video analytic service in a rapid manner. Also, the convolution neural networks are used as the core processing unit in the framework to facilitate the image analysing process.

Cite as

Qiushi Zheng, Jiong Jin, Tiehua Zhang, Longxiang Gao, and Yong Xiang. Realizing Video Analytic Service in the Fog-Based Infrastructure-Less Environments. In 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Open Access Series in Informatics (OASIcs), Volume 80, pp. 11:1-11:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{zheng_et_al:OASIcs.Fog-IoT.2020.11,
  author =	{Zheng, Qiushi and Jin, Jiong and Zhang, Tiehua and Gao, Longxiang and Xiang, Yong},
  title =	{{Realizing Video Analytic Service in the Fog-Based Infrastructure-Less Environments}},
  booktitle =	{2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)},
  pages =	{11:1--11:9},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-144-3},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{80},
  editor =	{Cervin, Anton and Yang, Yang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Fog-IoT.2020.11},
  URN =		{urn:nbn:de:0030-drops-120050},
  doi =		{10.4230/OASIcs.Fog-IoT.2020.11},
  annote =	{Keywords: Fog Computing, Convolution Neural Network, Infrastructure-less Environment}
}
  • Refine by Type
  • 7 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 3 2023
  • 1 2020

  • Refine by Author
  • 3 Lissandrini, Matteo
  • 2 Biswas, Russa
  • 2 Bonifati, Angela
  • 2 Dumbrava, Stefania
  • 2 de Melo, Gerard
  • Show More...

  • Refine by Series/Journal
  • 2 LIPIcs
  • 1 OASIcs
  • 4 TGDK

  • Refine by Classification
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Machine learning approaches
  • 1 Computing methodologies → Natural language processing
  • 1 Computing methodologies → Object detection
  • 1 Computing methodologies → Reasoning about belief and knowledge
  • Show More...

  • Refine by Keyword
  • 2 Knowledge Graphs
  • 1 CPU-GPU
  • 1 Convolution Neural Network
  • 1 Fog Computing
  • 1 Heterogeneous Computing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail