6 Search Results for "Xue, Tao"


Document
Hardness of Median and Center in the Ulam Metric

Authors: Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The classical rank aggregation problem seeks to combine a set X of n permutations into a single representative "consensus" permutation. In this paper, we investigate two fundamental rank aggregation tasks under the well-studied Ulam metric: computing a median permutation (which minimizes the sum of Ulam distances to X) and computing a center permutation (which minimizes the maximum Ulam distance to X) in two settings. - Continuous Setting: In the continuous setting, the median/center is allowed to be any permutation. It is known that computing a center in the Ulam metric is NP-hard and we add to this by showing that computing a median is NP-hard as well via a simple reduction from the Max-Cut problem. While this result may not be unexpected, it had remained elusive until now and confirms a speculation by Chakraborty, Das, and Krauthgamer [SODA '21]. - Discrete Setting: In the discrete setting, the median/center must be a permutation from the input set. We fully resolve the fine-grained complexity of the discrete median and discrete center problems under the Ulam metric, proving that the naive Õ(n² L)-time algorithm (where L is the length of the permutation) is conditionally optimal. This resolves an open problem raised by Abboud, Bateni, Cohen-Addad, Karthik C. S., and Seddighin [APPROX '23]. Our reductions are inspired by the known fine-grained lower bounds for similarity measures, but we face and overcome several new highly technical challenges.

Cite as

Nick Fischer, Elazar Goldenberg, Mursalin Habib, and Karthik C. S.. Hardness of Median and Center in the Ulam Metric. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 111:1-111:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ESA.2025.111,
  author =	{Fischer, Nick and Goldenberg, Elazar and Habib, Mursalin and Karthik C. S.},
  title =	{{Hardness of Median and Center in the Ulam Metric}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{111:1--111:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.111},
  URN =		{urn:nbn:de:0030-drops-245809},
  doi =		{10.4230/LIPIcs.ESA.2025.111},
  annote =	{Keywords: Ulam distance, median, center, rank aggregation, fine-grained complexity}
}
Document
Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing

Authors: Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Millions of biological sample records collected in the last few centuries archived in natural history collections are un-georeferenced. Georeferencing complex locality descriptions associated with these collection samples is a highly labour-intensive task collection agencies struggle with. None of the existing automated methods exploit maps that are an essential tool for georeferencing complex relations. We present preliminary experiments and results of a novel method that exploits multi-modal capabilities of recent Large Multi-Modal Models (LMM). This method enables the model to visually contextualize spatial relations it reads in the locality description. We use a grid-based approach to adapt these auto-regressive models for this task in a zero-shot setting. Our experiments conducted on a small manually annotated dataset show impressive results for our approach (∼1 km Average distance error) compared to uni-modal georeferencing with Large Language Models and existing georeferencing tools. The paper also discusses the findings of the experiments in light of an LMM’s ability to comprehend fine-grained maps. Motivated by these results, a practical framework is proposed to integrate this method into a georeferencing workflow.

Cite as

Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones. Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wijegunarathna_et_al:LIPIcs.GIScience.2025.12,
  author =	{Wijegunarathna, Kalana and Stock, Kristin and Jones, Christopher B.},
  title =	{{Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.12},
  URN =		{urn:nbn:de:0030-drops-238412},
  doi =		{10.4230/LIPIcs.GIScience.2025.12},
  annote =	{Keywords: Large Multi-Modal Models, Large Language Models, LLM, Georeferencing, Natural History collections}
}
Document
O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN

Authors: Junhao Gan, Anthony Wirth, and Zhuo Zhang

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
In this paper, we investigate three fundamental problems in the Massively Parallel Computation (MPC) model: (i) grid graph connectivity, (ii) approximate Euclidean Minimum Spanning Tree (EMST), and (iii) approximate DBSCAN. Our first result is a O(1)-round Las Vegas (i.e., succeeding with high probability) MPC algorithm for computing the connected components on a d-dimensional c-penetration grid graph ((d,c)-grid graph), where both d and c are positive integer constants. In such a grid graph, each vertex is a point with integer coordinates in ℕ^d, and an edge can only exist between two distinct vertices with 𝓁_∞-norm at most c. To our knowledge, the current best existing result for computing the connected components (CC’s) on (d,c)-grid graphs in the MPC model is to run the state-of-the-art MPC CC algorithms that are designed for general graphs: they achieve O(log log n + log D) [Behnezhad et al., 2019] and O(log log n + log 1/(λ)) [Sepehr Assadi et al., 2019] rounds, respectively, where D is the diameter and λ is the spectral gap of the graph. With our grid graph connectivity technique, our second main result is a O(1)-round Las Vegas MPC algorithm for computing approximate Euclidean MST. The existing state-of-the-art result on this problem is the O(1)-round MPC algorithm proposed by Andoni et al. [Alexandr Andoni et al., 2014], which only guarantees an approximation on the overall weight in expectation. In contrast, our algorithm not only guarantees a deterministic overall weight approximation, but also achieves a deterministic edge-wise weight approximation. The latter property is crucial to many applications, such as finding the Bichromatic Closest Pair and Single-Linkage Clustering. Last, but not least, our third main result is a O(1)-round Las Vegas MPC algorithm for computing an approximate DBSCAN clustering in O(1)-dimensional Euclidean space.

Cite as

Junhao Gan, Anthony Wirth, and Zhuo Zhang. O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gan_et_al:LIPIcs.ICDT.2025.7,
  author =	{Gan, Junhao and Wirth, Anthony and Zhang, Zhuo},
  title =	{{O(1)-Round MPC Algorithms for Multi-Dimensional Grid Graph Connectivity, Euclidean MST and DBSCAN}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.7},
  URN =		{urn:nbn:de:0030-drops-229483},
  doi =		{10.4230/LIPIcs.ICDT.2025.7},
  annote =	{Keywords: Massively Parallel Computation, Graph Connectivity, Grid Graphs, Euclidean Minimum Spanning Tree, DBSCAN}
}
Document
Position
Large Language Models and Knowledge Graphs: Opportunities and Challenges

Authors: Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Large Language Models (LLMs) have taken Knowledge Representation - and the world - by storm. This inflection point marks a shift from explicit knowledge representation to a renewed focus on the hybrid representation of both explicit knowledge and parametric knowledge. In this position paper, we will discuss some of the common debate points within the community on LLMs (parametric knowledge) and Knowledge Graphs (explicit knowledge) and speculate on opportunities and visions that the renewed focus brings, as well as related research topics and challenges.

Cite as

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo, Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo Lissandrini, Russa Biswas, Gerard de Melo, Angela Bonifati, Edlira Vakaj, Mauro Dragoni, and Damien Graux. Large Language Models and Knowledge Graphs: Opportunities and Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 2:1-2:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{pan_et_al:TGDK.1.1.2,
  author =	{Pan, Jeff Z. and Razniewski, Simon and Kalo, Jan-Christoph and Singhania, Sneha and Chen, Jiaoyan and Dietze, Stefan and Jabeen, Hajira and Omeliyanenko, Janna and Zhang, Wen and Lissandrini, Matteo and Biswas, Russa and de Melo, Gerard and Bonifati, Angela and Vakaj, Edlira and Dragoni, Mauro and Graux, Damien},
  title =	{{Large Language Models and Knowledge Graphs: Opportunities and Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:38},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.2},
  URN =		{urn:nbn:de:0030-drops-194766},
  doi =		{10.4230/TGDK.1.1.2},
  annote =	{Keywords: Large Language Models, Pre-trained Language Models, Knowledge Graphs, Ontology, Retrieval Augmented Language Models}
}
Document
Vision
Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges

Authors: Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The graph model is nowadays largely adopted to model a wide range of knowledge and data, spanning from social networks to knowledge graphs (KGs), representing a successful paradigm of how symbolic and transparent AI can scale on the World Wide Web. However, due to their unprecedented volume, they are generally tackled by Machine Learning (ML) and mostly numeric based methods such as graph embedding models (KGE) and deep neural networks (DNNs). The latter methods have been proved lately very efficient, leading the current AI spring. In this vision paper, we introduce some of the main existing methods for combining KGs and ML, divided into two categories: those using ML to improve KGs, and those using KGs to improve results on ML tasks. From this introduction, we highlight research gaps and perspectives that we deem promising and currently under-explored for the involved research communities, spanning from KG support for LLM prompting, integration of KG semantics in ML models to symbol-based methods, interpretability of ML models, and the need for improved benchmark datasets. In our opinion, such perspectives are stepping stones in an ultimate view of KGs as central assets for neuro-symbolic and explainable AI.

Cite as

Claudia d'Amato, Louis Mahon, Pierre Monnin, and Giorgos Stamou. Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 8:1-8:35, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{damato_et_al:TGDK.1.1.8,
  author =	{d'Amato, Claudia and Mahon, Louis and Monnin, Pierre and Stamou, Giorgos},
  title =	{{Machine Learning and Knowledge Graphs: Existing Gaps and Future Research Challenges}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{8:1--8:35},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.8},
  URN =		{urn:nbn:de:0030-drops-194824},
  doi =		{10.4230/TGDK.1.1.8},
  annote =	{Keywords: Graph-based Learning, Knowledge Graph Embeddings, Large Language Models, Explainable AI, Knowledge Graph Completion \& Curation}
}
Document
Definitional Extension in Type Theory

Authors: Tao Xue

Published in: LIPIcs, Volume 26, 19th International Conference on Types for Proofs and Programs (TYPES 2013)


Abstract
When we extend a type system, the relation between the original system and its extension is an important issue we want to know. Conservative extension is a traditional relation we study with. But in some cases, like coercive subtyping, it is not strong enough to capture all the properties, more powerful relation between the systems is required. We bring the idea definitional extension from mathematical logic into type theory. In this paper, we study the notion of definitional extension for type theories and explicate its use, both informally and formally, in the context of coercive subtyping.

Cite as

Tao Xue. Definitional Extension in Type Theory. In 19th International Conference on Types for Proofs and Programs (TYPES 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 26, pp. 251-269, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{xue:LIPIcs.TYPES.2013.251,
  author =	{Xue, Tao},
  title =	{{Definitional Extension in Type Theory}},
  booktitle =	{19th International Conference on Types for Proofs and Programs (TYPES 2013)},
  pages =	{251--269},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-72-9},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{26},
  editor =	{Matthes, Ralph and Schubert, Aleksy},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2013.251},
  URN =		{urn:nbn:de:0030-drops-46352},
  doi =		{10.4230/LIPIcs.TYPES.2013.251},
  annote =	{Keywords: conservative extension, definitional extension, subtype, coercive subtyping}
}
  • Refine by Type
  • 6 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 2 2023
  • 1 2014

  • Refine by Author
  • 1 Biswas, Russa
  • 1 Bonifati, Angela
  • 1 Chen, Jiaoyan
  • 1 Dietze, Stefan
  • 1 Dragoni, Mauro
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs
  • 2 TGDK

  • Refine by Classification
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Natural language processing
  • 1 Computing methodologies → Visual inspection
  • 1 General and reference → Surveys and overviews
  • Show More...

  • Refine by Keyword
  • 3 Large Language Models
  • 1 DBSCAN
  • 1 Euclidean Minimum Spanning Tree
  • 1 Explainable AI
  • 1 Georeferencing
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail