Search Results

Documents authored by Łącki, Jakub


Document
Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling

Authors: Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
The SetCover problem has been extensively studied in many different models of computation, including parallel and distributed settings. From an approximation point of view, there are two standard guarantees: an O(log Δ)-approximation (where Δ is the maximum set size) and an O(f)-approximation (where f is the maximum number of sets containing any given element). In this paper, we introduce a new, surprisingly simple, model-independent approach to solving SetCover in unweighted graphs. We obtain multiple improved algorithms in the MPC and CRCW PRAM models. First, in the MPC model with sublinear space per machine, our algorithms can compute an O(f) approximation to SetCover in Ô(√{log Δ} + log f) rounds and a O(log Δ) approximation in O(log^{3/2} n) rounds. Moreover, in the PRAM model, we give a O(f) approximate algorithm using linear work and O(log n) depth. All these bounds improve the existing round complexity/depth bounds by a log^{Ω(1)} n factor. Moreover, our approach leads to many other new algorithms, including improved algorithms for the HypergraphMatching problem in the MPC model, as well as simpler SetCover algorithms that match the existing bounds.

Cite as

Laxman Dhulipala, Michael Dinitz, Jakub Łącki, and Slobodan Mitrović. Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 19:1-19:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dhulipala_et_al:LIPIcs.DISC.2024.19,
  author =	{Dhulipala, Laxman and Dinitz, Michael and {\L}\k{a}cki, Jakub and Mitrovi\'{c}, Slobodan},
  title =	{{Parallel Set Cover and Hypergraph Matching via Uniform Random Sampling}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{19:1--19:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.19},
  URN =		{urn:nbn:de:0030-drops-212453},
  doi =		{10.4230/LIPIcs.DISC.2024.19},
  annote =	{Keywords: approximate maximum matching, set cover, hypergraph matching, PRAM, massively parallel computation}
}
Document
Track A: Algorithms, Complexity and Games
It’s Hard to HAC Average Linkage!

Authors: MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.

Cite as

MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki. It’s Hard to HAC Average Linkage!. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2024.18,
  author =	{Bateni, MohammadHossein and Dhulipala, Laxman and Gowda, Kishen N. and Hershkowitz, D. Ellis and Jayaram, Rajesh and {\L}\k{a}cki, Jakub},
  title =	{{It’s Hard to HAC Average Linkage!}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.18},
  URN =		{urn:nbn:de:0030-drops-201613},
  doi =		{10.4230/LIPIcs.ICALP.2024.18},
  annote =	{Keywords: Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity, Parallel Algorithms, CC}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic PageRank: Algorithms and Lower Bounds

Authors: Rajesh Jayaram, Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector π ∈ ℝⁿ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive (L₁) approximations. First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case (1/α)^{Θ(log log n)} update time is necessary and sufficient for this problem, where α is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires Ω(n^{1-δ}) time per update on average, for any δ > 0, even in the incremental setting. For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time Ω(n^{1-δ}), for any δ > 0, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al. (VLDB 2010). This sharply contrasts with the undirected setting, where we show that poly log n update time is feasible, even in the fully dynamic setting under oblivious adversary.

Cite as

Rajesh Jayaram, Jakub Łącki, Slobodan Mitrović, Krzysztof Onak, and Piotr Sankowski. Dynamic PageRank: Algorithms and Lower Bounds. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 90:1-90:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jayaram_et_al:LIPIcs.ICALP.2024.90,
  author =	{Jayaram, Rajesh and {\L}\k{a}cki, Jakub and Mitrovi\'{c}, Slobodan and Onak, Krzysztof and Sankowski, Piotr},
  title =	{{Dynamic PageRank: Algorithms and Lower Bounds}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{90:1--90:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.90},
  URN =		{urn:nbn:de:0030-drops-202336},
  doi =		{10.4230/LIPIcs.ICALP.2024.90},
  annote =	{Keywords: PageRank, dynamic algorithms, graph algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Decremental Connectivity in Non-Sparse Graphs

Authors: Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on a sparse graph. For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an O(m log (n² / m) + n poly log n)-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n²) edges. Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an Ω(log n/log log n) worst-case time lower bound in the decremental setting [Alstrup, Husfeldt, and Rauhe FOCS'98] as well as an Ω(log n) amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].

Cite as

Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal Decremental Connectivity in Non-Sparse Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.ICALP.2023.6,
  author =	{Aamand, Anders and Karczmarz, Adam and {\L}\k{a}cki, Jakub and Parotsidis, Nikos and Rasmussen, Peter M. R. and Thorup, Mikkel},
  title =	{{Optimal Decremental Connectivity in Non-Sparse Graphs}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.6},
  URN =		{urn:nbn:de:0030-drops-180581},
  doi =		{10.4230/LIPIcs.ICALP.2023.6},
  annote =	{Keywords: decremental connectivity, dynamic connectivity}
}
Document
Track A: Algorithms, Complexity and Games
Near-Optimal Decremental Hopsets with Applications

Authors: Jakub Łącki and Yasamin Nazari

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Given a weighted undirected graph G = (V,E,w), a hopset H of hopbound β and stretch (1+ε) is a set of edges such that for any pair of nodes u, v ∈ V, there is a path in G ∪ H of at most β hops, whose length is within a (1+ε) factor from the distance between u and v in G. We show the first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The update time of our algorithm matches the best known static algorithm up to polylogarithmic factors. All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial) hopbound of 2^{log^{Ω(1)} n} [Bernstein, FOCS'09; HKN, FOCS'14; Chechik, FOCS'18]. By applying our decremental hopset construction, we get improved or near optimal bounds for several distance problems. Most importantly, we show how to decrementally maintain (2k-1)(1+ε)-approximate all-pairs shortest paths (for any constant k ≥ 2), in Õ(n^{1/k}) amortized update time and O(k) query time. This improves (by a polynomial factor) over the update-time of the best previously known decremental algorithm in the constant query time regime. Moreover, it improves over the result of [Chechik, FOCS'18] that has a query time of O(log log(nW)), where W is the aspect ratio, and the amortized update time is n^{1/k}⋅(1/ε)^{Õ(√{log n})}). For sparse graphs our construction nearly matches the best known static running time / query time tradeoff. We also obtain near-optimal bounds for maintaining approximate multi-source shortest paths and distance sketches, and get improved bounds for approximate single-source shortest paths. Our algorithms are randomized and our bounds hold with high probability against an oblivious adversary.

Cite as

Jakub Łącki and Yasamin Nazari. Near-Optimal Decremental Hopsets with Applications. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lacki_et_al:LIPIcs.ICALP.2022.86,
  author =	{{\L}\k{a}cki, Jakub and Nazari, Yasamin},
  title =	{{Near-Optimal Decremental Hopsets with Applications}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{86:1--86:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.86},
  URN =		{urn:nbn:de:0030-drops-164277},
  doi =		{10.4230/LIPIcs.ICALP.2022.86},
  annote =	{Keywords: Dynamic Algorithms, Data Structures, Shortest Paths, Hopsets}
}
Document
Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs

Authors: Adam Karczmarz and Jakub Łącki

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We give new partially-dynamic algorithms for the all-pairs shortest paths problem in weighted directed graphs. Most importantly, we give a new deterministic incremental algorithm for the problem that handles updates in O~(mn^(4/3) log{W}/epsilon) total time (where the edge weights are from [1,W]) and explicitly maintains a (1+epsilon)-approximate distance matrix. For a fixed epsilon>0, this is the first deterministic partially dynamic algorithm for all-pairs shortest paths in directed graphs, whose update time is o(n^2) regardless of the number of edges. Furthermore, we also show how to improve the state-of-the-art partially dynamic randomized algorithms for all-pairs shortest paths [Baswana et al. STOC’02, Bernstein STOC’13] from Monte Carlo randomized to Las Vegas randomized without increasing the running time bounds (with respect to the O~(*) notation). Our results are obtained by giving new algorithms for the problem of dynamically maintaining hubs, that is a set of O~(n/d) vertices which hit a shortest path between each pair of vertices, provided it has hop-length Omega(d). We give new subquadratic deterministic and Las Vegas algorithms for maintenance of hubs under either edge insertions or deletions.

Cite as

Adam Karczmarz and Jakub Łącki. Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 65:1-65:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ESA.2019.65,
  author =	{Karczmarz, Adam and {\L}\k{a}cki, Jakub},
  title =	{{Reliable Hubs for Partially-Dynamic All-Pairs Shortest Paths in Directed Graphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{65:1--65:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.65},
  URN =		{urn:nbn:de:0030-drops-111862},
  doi =		{10.4230/LIPIcs.ESA.2019.65},
  annote =	{Keywords: shortest paths, dynamic, incremental, decremental, directed graphs, hubs}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Stochastic Graph Exploration

Authors: Aris Anagnostopoulos, Ilan R. Cohen, Stefano Leonardi, and Jakub Łącki

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Exploring large-scale networks is a time consuming and expensive task which is usually operated in a complex and uncertain environment. A crucial aspect of network exploration is the development of suitable strategies that decide which nodes and edges to probe at each stage of the process. To model this process, we introduce the stochastic graph exploration problem. The input is an undirected graph G=(V,E) with a source vertex s, stochastic edge costs drawn from a distribution pi_e, e in E, and rewards on vertices of maximum value R. The goal is to find a set F of edges of total cost at most B such that the subgraph of G induced by F is connected, contains s, and maximizes the total reward. This problem generalizes the stochastic knapsack problem and other stochastic probing problems recently studied. Our focus is on the development of efficient nonadaptive strategies that are competitive against the optimal adaptive strategy. A major challenge is the fact that the problem has an Omega(n) adaptivity gap even on a tree of n vertices. This is in sharp contrast with O(1) adaptivity gap of the stochastic knapsack problem, which is a special case of our problem. We circumvent this negative result by showing that O(log nR) resource augmentation suffices to obtain O(1) approximation on trees and O(log nR) approximation on general graphs. To achieve this result, we reduce stochastic graph exploration to a memoryless process - the minesweeper problem - which assigns to every edge a probability that the process terminates when the edge is probed. For this problem, interesting in its own, we present an optimal polynomial time algorithm on trees and an O(log nR) approximation for general graphs. We study also the problem in which the maximum cost of an edge is a logarithmic fraction of the budget. We show that under this condition, there exist polynomial-time oblivious strategies that use 1+epsilon budget, whose adaptivity gaps on trees and general graphs are 1+epsilon and 8+epsilon, respectively. Finally, we provide additional results on the structure and the complexity of nonadaptive and adaptive strategies.

Cite as

Aris Anagnostopoulos, Ilan R. Cohen, Stefano Leonardi, and Jakub Łącki. Stochastic Graph Exploration. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 136:1-136:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{anagnostopoulos_et_al:LIPIcs.ICALP.2019.136,
  author =	{Anagnostopoulos, Aris and Cohen, Ilan R. and Leonardi, Stefano and {\L}\k{a}cki, Jakub},
  title =	{{Stochastic Graph Exploration}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{136:1--136:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.136},
  URN =		{urn:nbn:de:0030-drops-107122},
  doi =		{10.4230/LIPIcs.ICALP.2019.136},
  annote =	{Keywords: stochastic optimization, graph exploration, approximation algorithms}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail