Search Results

Documents authored by Chrobak, Marek


Document
Online Paging with Heterogeneous Cache Slots

Authors: Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman, Ravi Sundaram, and Neal E. Young

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
It is natural to generalize the online k-Server problem by allowing each request to specify not only a point p, but also a subset S of servers that may serve it. To initiate a systematic study of this generalization, we focus on uniform and star metrics. For uniform metrics, the problem is equivalent to a generalization of Paging in which each request specifies not only a page p, but also a subset S of cache slots, and is satisfied by having a copy of p in some slot in S. We call this problem Slot-Heterogenous Paging. In realistic settings only certain subsets of cache slots or servers would appear in requests. Therefore we parameterize the problem by specifying a family 𝒮 ⊆ 2^[k] of requestable slot sets, and we establish bounds on the competitive ratio as a function of the cache size k and family 𝒮. If all request sets are allowed (𝒮 = 2^[k]), the optimal deterministic and randomized competitive ratios are exponentially worse than for standard Paging (𝒮 = {[k]}). As a function of |𝒮| and k, the optimal deterministic ratio is polynomial: at most O(k²|𝒮|) and at least Ω(√{|𝒮|}). For any laminar family {𝒮} of height h, the optimal ratios are O(hk) (deterministic) and O(h²log k) (randomized). The special case that we call All-or-One Paging extends standard Paging by allowing each request to specify a specific slot to put the requested page in. For All-or-One Paging the optimal competitive ratios are Θ(k) (deterministic) and Θ(log k) (randomized), while the offline problem is NP-hard. We extend the deterministic upper bound to the weighted variant of All-or-One Paging (a generalization of standard Weighted Paging), showing that it is also Θ(k). Some results for the laminar case are shown via a reduction to the generalization of Paging in which each request specifies a set P of pages, and is satisfied by fetching any page from P into the cache. The optimal ratios for the latter problem (with laminar family of height h) are at most hk (deterministic) and hH_k (randomized).

Cite as

Marek Chrobak, Samuel Haney, Mehraneh Liaee, Debmalya Panigrahi, Rajmohan Rajaraman, Ravi Sundaram, and Neal E. Young. Online Paging with Heterogeneous Cache Slots. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 23:1-23:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chrobak_et_al:LIPIcs.STACS.2023.23,
  author =	{Chrobak, Marek and Haney, Samuel and Liaee, Mehraneh and Panigrahi, Debmalya and Rajaraman, Rajmohan and Sundaram, Ravi and Young, Neal E.},
  title =	{{Online Paging with Heterogeneous Cache Slots}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{23:1--23:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.23},
  URN =		{urn:nbn:de:0030-drops-176759},
  doi =		{10.4230/LIPIcs.STACS.2023.23},
  annote =	{Keywords: Caching and paging algorithms, k-server, weighted paging, laminar family}
}
Document
Better Bounds for Online Line Chasing

Authors: Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Christian Coester, Łukasz Jeż, and Elias Koutsoupias

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We study online competitive algorithms for the line chasing problem in Euclidean spaces R^d, where the input consists of an initial point P_0 and a sequence of lines X_1, X_2, ..., X_m, revealed one at a time. At each step t, when the line X_t is revealed, the algorithm must determine a point P_t in X_t. An online algorithm is called c-competitive if for any input sequence the path P_0, P_1 , ..., P_m it computes has length at most c times the optimum path. The line chasing problem is a variant of a more general convex body chasing problem, where the sets X_t are arbitrary convex sets. To date, the best competitive ratio for the line chasing problem was 28.1, even in the plane. We improve this bound by providing a simple 3-competitive algorithm for any dimension d. We complement this bound by a matching lower bound for algorithms that are memoryless in the sense of our algorithm, and a lower bound of 1.5358 for arbitrary algorithms. The latter bound also improves upon the previous lower bound of sqrt{2}~=1.412 for convex body chasing in 2 dimensions.

Cite as

Marcin Bienkowski, Jarosław Byrka, Marek Chrobak, Christian Coester, Łukasz Jeż, and Elias Koutsoupias. Better Bounds for Online Line Chasing. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.MFCS.2019.8,
  author =	{Bienkowski, Marcin and Byrka, Jaros{\l}aw and Chrobak, Marek and Coester, Christian and Je\.{z}, {\L}ukasz and Koutsoupias, Elias},
  title =	{{Better Bounds for Online Line Chasing}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{8:1--8:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.8},
  URN =		{urn:nbn:de:0030-drops-109521},
  doi =		{10.4230/LIPIcs.MFCS.2019.8},
  annote =	{Keywords: convex body chasing, line chasing, competitive analysis}
}
Document
Online Packet Scheduling with Bounded Delay and Lookahead

Authors: Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We study the online bounded-delay packet scheduling problem (PacketScheduling), where packets of unit size arrive at a router over time and need to be transmitted over a network link. Each packet has two attributes: a non-negative weight and a deadline for its transmission. The objective is to maximize the total weight of the transmitted packets. This problem has been well studied in the literature, yet its optimal competitive ratio remains unknown: the best upper bound is 1.828 [Englert and Westermann, SODA 2007], still quite far from the best lower bound of phi approx 1.618 [Hajek, CISS 2001; Andelman et al, SODA 2003; Chin and Fung, Algorithmica, 2003]. In the variant of PacketScheduling with s-bounded instances, each packet can be scheduled in at most s consecutive slots, starting at its release time. The lower bound of phi applies even to the special case of 2-bounded instances, and a phi-competitive algorithm for 3-bounded instances was given in [Chin et al, JDA, 2006]. Improving that result, and addressing a question posed by Goldwasser [SIGACT News, 2010], we present a phi-competitive algorithm for 4-bounded instances. We also study a variant of PacketScheduling where an online algorithm has the additional power of 1-lookahead, knowing at time t which packets will arrive at time t+1. For PacketScheduling with 1-lookahead restricted to 2-bounded instances, we present an online algorithm with competitive ratio frac{1}{2}(sqrt{13} - 1) approx 1.303 and we prove a nearly tight lower bound of frac{1}{4}(1 + sqrt{17}) approx 1.281.

Cite as

Martin Böhm, Marek Chrobak, Lukasz Jez, Fei Li, Jirí Sgall, and Pavel Veselý. Online Packet Scheduling with Bounded Delay and Lookahead. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 21:1-21:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bohm_et_al:LIPIcs.ISAAC.2016.21,
  author =	{B\"{o}hm, Martin and Chrobak, Marek and Jez, Lukasz and Li, Fei and Sgall, Jir{\'\i} and Vesel\'{y}, Pavel},
  title =	{{Online Packet Scheduling with Bounded Delay and Lookahead}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{21:1--21:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.21},
  URN =		{urn:nbn:de:0030-drops-67901},
  doi =		{10.4230/LIPIcs.ISAAC.2016.21},
  annote =	{Keywords: buffer management, online scheduling, online algorithm, lookahead}
}
Document
Online Algorithms for Multi-Level Aggregation

Authors: Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukas Folwarczny, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Vesely

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
In the Multi-Level Aggregation Problem (MLAP), requests arrive at the nodes of an edge-weighted tree T, and have to be served eventually. A service is defined as a subtree X of T that contains its root. This subtree X serves all requests that are pending in the nodes of X, and the cost of this service is equal to the total weight of X. Each request also incurs waiting cost between its arrival and service times. The objective is to minimize the total waiting cost of all requests plus the total cost of all service subtrees. MLAP is a generalization of some well-studied optimization problems; for example, for trees of depth 1, MLAP is equivalent to the TCP Acknowledgment Problem, while for trees of depth 2, it is equivalent to the Joint Replenishment Problem. Aggregation problem for trees of arbitrary depth arise in multicasting, sensor networks, communication in organization hierarchies, and in supply-chain management. The instances of MLAP associated with these applications are naturally online, in the sense that aggregation decisions need to be made without information about future requests. Constant-competitive online algorithms are known for MLAP with one or two levels. However, it has been open whether there exist constant competitive online algorithms for trees of depth more than 2. Addressing this open problem, we give the first constant competitive online algorithm for networks of arbitrary (fixed) number of levels. The competitive ratio is O(D^4*2^D), where D is the depth of T. The algorithm works for arbitrary waiting cost functions, including the variant with deadlines. We include several additional results in the paper. We show that a standard lower-bound technique for MLAP, based on so-called Single-Phase instances, cannot give super-constant lower bounds (as a function of the tree depth). This result is established by giving an online algorithm with optimal competitive ratio 4 for such instances on arbitrary trees. We also study the MLAP variant when the tree is a path, for which we give a lower bound of 4 on the competitive ratio, improving the lower bound known for general MLAP. We complement this with a matching upper bound for the deadline setting.

Cite as

Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukas Folwarczny, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Vesely. Online Algorithms for Multi-Level Aggregation. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.ESA.2016.12,
  author =	{Bienkowski, Marcin and B\"{o}hm, Martin and Byrka, Jaroslaw and Chrobak, Marek and D\"{u}rr, Christoph and Folwarczny, Lukas and Jez, Lukasz and Sgall, Jiri and Kim Thang, Nguyen and Vesely, Pavel},
  title =	{{Online Algorithms for Multi-Level Aggregation}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.12},
  URN =		{urn:nbn:de:0030-drops-63637},
  doi =		{10.4230/LIPIcs.ESA.2016.12},
  annote =	{Keywords: algorithmic aspects of networks, online algorithms, scheduling and resource allocation}
}
Document
10071 Open Problems – Scheduling

Authors: Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
Collection of the open problems presented at the scheduling seminar.

Cite as

Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger. 10071 Open Problems – Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:DagSemProc.10071.3,
  author =	{Anderson, Jim and Andersson, Bj\"{o}rn and Azar, Yossi and Bansal, Nikhil and Bini, Enrico and Chrobak, Marek and Correa, Jos\'{e} and Cucu-Grosjean, Liliana and Davis, Rob and Easwaran, Arvind and Edmonds, Jeff and Funk, Shelby and Gopalakrishnan, Sathish and Hoogeveen, Han and Mathieu, Claire and Megow, Nicole and Naor, Seffi and Pruhs, Kirk and Queyranne, Maurice and Ros\'{e}n, Adi and Schabanel, Nicolas and Sgall, Ji\v{r}{\'\i} and Sitters, Ren\'{e} and Stiller, Sebastian and Uetz, Marc and Vredeveld, Tjark and Woeginger, Gerhard J.},
  title =	{{10071 Open Problems – Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.3},
  URN =		{urn:nbn:de:0030-drops-25367},
  doi =		{10.4230/DagSemProc.10071.3},
  annote =	{Keywords: Open problems, scheduling}
}
Document
Polynomial Time Algorithms for Minimum Energy Scheduling

Authors: Marek Chrobak, Philippe Baptiste, and Christoph Dürr

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
The aim of power management policies is to reduce the amount of energy consumed by computer systems while maintaining satisfactory level of performance. One common method for saving energy is to simply suspend the system during the idle times. No energy is consumed in the suspend mode. However, the process of waking up the system itself requires a certain fixed amount of energy, and thus suspending the system is beneficial only if the idle time is long enough to compensate for this additional energy expenditure. In the specific problem studied in the paper, we have a set of jobs with release times and deadlines that need to be executed on a single processor. Preemptions are allowed. The processor requires energy L to be woken up and, when it is on, it uses the energy at a rate of R units per unit of time. It has been an open problem whether a schedule minimizing the overall energy consumption can be computed in polynomial time. We solve this problem in positive, by providing an O(n5)-time algorithm. In addition we provide an O(n4)-time algorithm for computing the minimum energy schedule when all jobs have unit length.

Cite as

Marek Chrobak, Philippe Baptiste, and Christoph Dürr. Polynomial Time Algorithms for Minimum Energy Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{chrobak_et_al:DagSemProc.10071.8,
  author =	{Chrobak, Marek and Baptiste, Philippe and D\"{u}rr, Christoph},
  title =	{{Polynomial Time Algorithms for Minimum Energy Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.8},
  URN =		{urn:nbn:de:0030-drops-25351},
  doi =		{10.4230/DagSemProc.10071.8},
  annote =	{Keywords: Scheduling, algorithm, dynamic programming, energy}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail