Search Results

Documents authored by Gajjar, Kshitij


Document
Parameterized Shortest Path Reconfiguration

Authors: Nicolas Bousquet, Kshitij Gajjar, Abhiruk Lahiri, and Amer E. Mouawad

Published in: LIPIcs, Volume 321, 19th International Symposium on Parameterized and Exact Computation (IPEC 2024)


Abstract
An st-shortest path, or st-path for short, in a graph G is a shortest (induced) path from s to t in G. Two st-paths are said to be adjacent if they differ on exactly one vertex. A reconfiguration sequence between two st-paths P and Q is a sequence of adjacent st-paths starting from P and ending at Q. Deciding whether there exists a reconfiguration sequence between two given st-paths is known to be PSPACE-complete, even on restricted classes of graphs such as graphs of bounded bandwidth (hence pathwidth). On the positive side, and rather surprisingly, the problem is polynomial-time solvable on planar graphs. In this paper, we study the parameterized complexity of the Shortest Path Reconfiguration (SPR) problem. We show that SPR is W[1]-hard parameterized by k + 𝓁, even when restricted to graphs of bounded (constant) degeneracy; here k denotes the number of edges on an st-path, and 𝓁 denotes the length of a reconfiguration sequence from P to Q. We complement our hardness result by establishing the fixed-parameter tractability of SPR parameterized by 𝓁 and restricted to nowhere-dense classes of graphs. Additionally, we establish fixed-parameter tractability of SPR when parameterized by the treedepth, by the cluster-deletion number, or by the modular-width of the input graph.

Cite as

Nicolas Bousquet, Kshitij Gajjar, Abhiruk Lahiri, and Amer E. Mouawad. Parameterized Shortest Path Reconfiguration. In 19th International Symposium on Parameterized and Exact Computation (IPEC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 321, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bousquet_et_al:LIPIcs.IPEC.2024.23,
  author =	{Bousquet, Nicolas and Gajjar, Kshitij and Lahiri, Abhiruk and Mouawad, Amer E.},
  title =	{{Parameterized Shortest Path Reconfiguration}},
  booktitle =	{19th International Symposium on Parameterized and Exact Computation (IPEC 2024)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-353-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{321},
  editor =	{Bonnet, \'{E}douard and Rz\k{a}\.{z}ewski, Pawe{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2024.23},
  URN =		{urn:nbn:de:0030-drops-222491},
  doi =		{10.4230/LIPIcs.IPEC.2024.23},
  annote =	{Keywords: combinatorial reconfiguration, shortest path reconfiguration, parameterized complexity, structural parameters, treedepth, cluster deletion number, modular width}
}
Document
Monotone Classes Beyond VNP

Authors: Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
In this work, we study the natural monotone analogues of various equivalent definitions of VPSPACE: a well studied class (Poizat 2008, Koiran & Perifel 2009, Malod 2011, Mahajan & Rao 2013) that is believed to be larger than VNP. We observe that these monotone analogues are not equivalent unlike their non-monotone counterparts, and propose monotone VPSPACE (mVPSPACE) to be defined as the monotone analogue of Poizat’s definition. With this definition, mVPSPACE turns out to be exponentially stronger than mVNP and also satisfies several desirable closure properties that the other analogues may not. Our initial goal was to understand the monotone complexity of transparent polynomials, a concept that was recently introduced by Hrubeš & Yehudayoff (2021). In that context, we show that transparent polynomials of large sparsity are hard for the monotone analogues of all the known definitions of VPSPACE, except for the one due to Poizat.

Cite as

Prerona Chatterjee, Kshitij Gajjar, and Anamay Tengse. Monotone Classes Beyond VNP. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.FSTTCS.2023.11,
  author =	{Chatterjee, Prerona and Gajjar, Kshitij and Tengse, Anamay},
  title =	{{Monotone Classes Beyond VNP}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.11},
  URN =		{urn:nbn:de:0030-drops-193846},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.11},
  annote =	{Keywords: Algebraic Complexity, Monotone Computation, VPSPACE, Transparent Polynomials}
}
Document
Approximating the Center Ranking Under Ulam

Authors: Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
We study the problem of approximating a center under the Ulam metric. The Ulam metric, defined over a set of permutations over [n], is the minimum number of move operations (deletion plus insertion) to transform one permutation into another. The Ulam metric is a simpler variant of the general edit distance metric. It provides a measure of dissimilarity over a set of rankings/permutations. In the center problem, given a set of permutations, we are asked to find a permutation (not necessarily from the input set) that minimizes the maximum distance to the input permutations. This problem is also referred to as maximum rank aggregation under Ulam. So far, we only know of a folklore 2-approximation algorithm for this NP-hard problem. Even for constantly many permutations, we do not know anything better than an exhaustive search over all n! permutations. In this paper, we achieve a (3/2 - 1/(3m))-approximation of the Ulam center in time n^O(m² ln m), for m input permutations over [n]. We therefore get a polynomial time bound while achieving better than a 3/2-approximation for constantly many permutations. This problem is of special interest even for constantly many permutations because under certain dissimilarity measures over rankings, even for four permutations, the problem is NP-hard. In proving our result, we establish a surprising connection between the approximate Ulam center problem and the closest string with wildcards problem (the center problem over the Hamming metric, allowing wildcards). We further study the closest string with wildcards problem and show that there cannot exist any (2-ε)-approximation algorithm (for any ε > 0) for it unless 𝖯 = NP. This inapproximability result is in sharp contrast with the same problem without wildcards, where we know of a PTAS.

Cite as

Diptarka Chakraborty, Kshitij Gajjar, and Agastya Vibhuti Jha. Approximating the Center Ranking Under Ulam. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 12:1-12:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{chakraborty_et_al:LIPIcs.FSTTCS.2021.12,
  author =	{Chakraborty, Diptarka and Gajjar, Kshitij and Jha, Agastya Vibhuti},
  title =	{{Approximating the Center Ranking Under Ulam}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{12:1--12:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.12},
  URN =		{urn:nbn:de:0030-drops-155230},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.12},
  annote =	{Keywords: Center Problem, Ulam Metric, Edit Distance, Closest String, Approximation Algorithms}
}
Document
Distance-Preserving Subgraphs of Interval Graphs

Authors: Kshitij Gajjar and Jaikumar Radhakrishnan

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
We consider the problem of finding small distance-preserving subgraphs of undirected, unweighted interval graphs that have k terminal vertices. We show that every interval graph admits a distance-preserving subgraph with O(k log k) branching vertices. We also prove a matching lower bound by exhibiting an interval graph based on bit-reversal permutation matrices. In addition, we show that interval graphs admit subgraphs with O(k) branching vertices that approximate distances up to an additive term of +1.

Cite as

Kshitij Gajjar and Jaikumar Radhakrishnan. Distance-Preserving Subgraphs of Interval Graphs. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 39:1-39:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gajjar_et_al:LIPIcs.ESA.2017.39,
  author =	{Gajjar, Kshitij and Radhakrishnan, Jaikumar},
  title =	{{Distance-Preserving Subgraphs of Interval Graphs}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{39:1--39:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.39},
  URN =		{urn:nbn:de:0030-drops-78798},
  doi =		{10.4230/LIPIcs.ESA.2017.39},
  annote =	{Keywords: interval graphs, shortest path, distance-preserving subgraphs, bit-reversal permutation matrix}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail