Search Results

Documents authored by Hörsch, Florian


Document
Multicut Problems in Almost-Planar Graphs: the Dependency of Complexity on the Demand Pattern

Authors: Florian Hörsch and Dániel Marx

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Given a graph G, a set T of terminal vertices, and a demand graph H on T, the Multicut problem asks for a set of edges of minimum weight that separates the pairs of terminals specified by the edges of H. The Multicut problem can be solved in polynomial time if the number of terminals and the genus of the graph is bounded (Colin de Verdière [Algorithmica, 2017]). Restricting the possible demand graphs in the input leads to special cases of Multicut whose complexity might be different from the general problem. Focke et al. [SoCG 2024] systematically characterized which special cases of Multicut are fixed-parameter tractable parameterized by the number of terminals on planar graphs. Moreover, extending these results beyond planar graphs, they precisely determined how the parameter genus influences the complexity and presented partial results of this form for graphs that can be made planar by the deletion of π edges. Continuing this line of work, we complete the picture on how this parameter π influences the complexity of different special cases and precisely determine the influence of the crossing number, another parameter measuring closeness to planarity. Formally, let ℋ be any class of graphs (satisfying a mild closure property) and let Multicut(ℋ) be the special case when the demand graph H is in ℋ. Our first main result is showing that if ℋ has the combinatorial property of having bounded distance to extended bicliques, then Multicut(ℋ) on unweighted graphs is FPT parameterized by the number t of terminals and π. For the case when ℋ does not have this combinatorial property, Focke et al. [SoCG 2024] showed that O(√t) is essentially the best possible exponent of the running time; together with our result, this gives a complete understanding of how the parameter π influences complexity on unweighted graphs. Our second main result is giving an algorithm whose existence shows that the parameter crossing number behaves analogously if we consider Multicut(ℋ) on weighted graphs.

Cite as

Florian Hörsch and Dániel Marx. Multicut Problems in Almost-Planar Graphs: the Dependency of Complexity on the Demand Pattern. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 87:1-87:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{horsch_et_al:LIPIcs.ESA.2025.87,
  author =	{H\"{o}rsch, Florian and Marx, D\'{a}niel},
  title =	{{Multicut Problems in Almost-Planar Graphs: the Dependency of Complexity on the Demand Pattern}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{87:1--87:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.87},
  URN =		{urn:nbn:de:0030-drops-245553},
  doi =		{10.4230/LIPIcs.ESA.2025.87},
  annote =	{Keywords: MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embedded Graph, Planar Graph, Crossing Number}
}
Document
From Chinese Postman to Salesman and Beyond: Shortest Tour δ-Covering All Points on All Edges

Authors: Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
A well-studied continuous model of graphs, introduced by Dearing and Francis [Transportation Science, 1974], considers each edge as a continuous unit-length interval of points. For δ ≥ 0, we introduce the problem δ-Tour, where the objective is to find the shortest tour that comes within a distance of δ of every point on every edge. It can be observed that 0-Tour is essentially equivalent to the Chinese Postman Problem, which is solvable in polynomial time. In contrast, 1/2-Tour is essentially equivalent to the graphic Traveling Salesman Problem (TSP), which is NP-hard but admits a constant-factor approximation in polynomial time. We investigate δ-Tour for other values of δ, noting that the problem’s behavior and the insights required to understand it differ significantly across various δ regimes. On the one hand, we first examine the approximability of the problem for every fixed δ > 0: 1) For every fixed 0 < δ < 3/2, the problem δ-Tour admits a constant-factor approximation and is APX-hard, while for every fixed δ ≥ 3/2, the problem admits an O(log n)-approximation in polynomial time and has no polynomial-time o(log n)-approximation, unless P = NP. Our techniques also yield a new APX-hardness result for graphic TSP on cubic bipartite graphs. When parameterizing by the length of a shortest tour, it is relatively easy to show that 3/2 is the threshold of fixed-parameter tractability: 2) For every fixed 0 < δ < 3/2, the problem δ-Tour is fixed-parameter tractable (FPT) when parameterized by the length of a shortest tour, while it is W[2]-hard for every fixed δ ≥ 3/2. On the other hand, if δ is considered to be part of the input, then an interesting nontrivial phenomenon appears when δ is a constant fraction of the number of vertices: 3) If δ is part of the input, then the problem can be solved in time f(k)n^O(k), where k = ⌈n/δ⌉; however, assuming the Exponential-Time Hypothesis (ETH), there is no algorithm that solves the problem and runs in time f(k)n^o(k/log k).

Cite as

Fabian Frei, Ahmed Ghazy, Tim A. Hartmann, Florian Hörsch, and Dániel Marx. From Chinese Postman to Salesman and Beyond: Shortest Tour δ-Covering All Points on All Edges. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 31:1-31:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{frei_et_al:LIPIcs.ISAAC.2024.31,
  author =	{Frei, Fabian and Ghazy, Ahmed and Hartmann, Tim A. and H\"{o}rsch, Florian and Marx, D\'{a}niel},
  title =	{{From Chinese Postman to Salesman and Beyond: Shortest Tour \delta-Covering All Points on All Edges}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{31:1--31:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.31},
  URN =		{urn:nbn:de:0030-drops-221582},
  doi =		{10.4230/LIPIcs.ISAAC.2024.31},
  annote =	{Keywords: Chinese Postman Problem, Traveling Salesman Problem, Continuous Graphs, Approximation Algorithms, Inapproximability, Parameterized Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Problems on Group-Labeled Matroid Bases

Authors: Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the label of a subset of the ground set as the sum of the labels of its elements. We study a collection of problems on finding bases and common bases of matroids with restrictions on their labels. For zero bases and zero common bases, the results are mostly negative. While finding a non-zero basis of a matroid is not difficult, it turns out that the complexity of finding a non-zero common basis depends on the group. Namely, we show that the problem is hard for a fixed group if it contains an element of order two, otherwise it is polynomially solvable. As a generalization of both zero and non-zero constraints, we further study F-avoiding constraints where we seek a basis or common basis whose label is not in a given set F of forbidden labels. Using algebraic techniques, we give a randomized algorithm for finding an F-avoiding common basis of two matroids represented over the same field for finite groups given as operation tables. The study of F-avoiding bases with groups given as oracles leads to a conjecture stating that whenever an F-avoiding basis exists, an F-avoiding basis can be obtained from an arbitrary basis by exchanging at most |F| elements. We prove the conjecture for the special cases when |F| ≤ 2 or the group is ordered. By relying on structural observations on matroids representable over fixed, finite fields, we verify a relaxed version of the conjecture for these matroids. As a consequence, we obtain a polynomial-time algorithm in these special cases for finding an F-avoiding basis when |F| is fixed.

Cite as

Florian Hörsch, András Imolay, Ryuhei Mizutani, Taihei Oki, and Tamás Schwarcz. Problems on Group-Labeled Matroid Bases. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 86:1-86:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{horsch_et_al:LIPIcs.ICALP.2024.86,
  author =	{H\"{o}rsch, Florian and Imolay, Andr\'{a}s and Mizutani, Ryuhei and Oki, Taihei and Schwarcz, Tam\'{a}s},
  title =	{{Problems on Group-Labeled Matroid Bases}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{86:1--86:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.86},
  URN =		{urn:nbn:de:0030-drops-202299},
  doi =		{10.4230/LIPIcs.ICALP.2024.86},
  annote =	{Keywords: matroids, matroid intersection, congruency constraint, exact-weight constraint, additive combinatorics, algebraic algorithm, strongly base orderability}
}
Document
Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern

Authors: Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
The Multicut problem asks for a minimum cut separating certain pairs of vertices: formally, given a graph G and a demand graph H on a set T ⊆ V(G) of terminals, the task is to find a minimum-weight set C of edges of G such that whenever two vertices of T are adjacent in H, they are in different components of G⧵ C. Colin de Verdière [Algorithmica, 2017] showed that Multicut with t terminals on a graph G of genus g can be solved in time f(t,g) n^O(√{g²+gt+t}). Cohen-Addad et al. [JACM, 2021] proved a matching lower bound showing that the exponent of n is essentially best possible (for every fixed value of t and g), even in the special case of Multiway Cut, where the demand graph H is a complete graph. However, this lower bound tells us nothing about other special cases of Multicut such as Group 3-Terminal Cut (where three groups of terminals need to be separated from each other). We show that if the demand pattern is, in some sense, close to being a complete bipartite graph, then Multicut can be solved faster than f(t,g) n^{O(√{g²+gt+t})}, and furthermore this is the only property that allows such an improvement. Formally, for a class ℋ of graphs, Multicut(ℋ) is the special case where the demand graph H is in ℋ. For every fixed class ℋ (satisfying some mild closure property), fixed g, and fixed t, our main result gives tight upper and lower bounds on the exponent of n in algorithms solving Multicut(ℋ). In addition, we investigate a similar setting where, instead of parameterizing by the genus g of G, we parameterize by the minimum number k of edges of G that need to be deleted to obtain a planar graph. Interestingly, in this setting it makes a significant difference whether the graph G is weighted or unweighted: further nontrivial algorithmic techniques give substantial improvements in the unweighted case.

Cite as

Jacob Focke, Florian Hörsch, Shaohua Li, and Dániel Marx. Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 57:1-57:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{focke_et_al:LIPIcs.SoCG.2024.57,
  author =	{Focke, Jacob and H\"{o}rsch, Florian and Li, Shaohua and Marx, D\'{a}niel},
  title =	{{Multicut Problems in Embedded Graphs: The Dependency of Complexity on the Demand Pattern}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{57:1--57:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.57},
  URN =		{urn:nbn:de:0030-drops-200021},
  doi =		{10.4230/LIPIcs.SoCG.2024.57},
  annote =	{Keywords: MultiCut, Multiway Cut, Parameterized Complexity, Tight Bounds, Embedded Graph, Planar Graph, Genus, Surface, Exponential Time Hypothesis}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail