Search Results

Documents authored by Lasota, Sławomir


Document
Bi-Reachability in Petri Nets with Data

Authors: Łukasz Kamiński and Sławomir Lasota

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Cite as

Łukasz Kamiński and Sławomir Lasota. Bi-Reachability in Petri Nets with Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.CONCUR.2024.31,
  author =	{Kami\'{n}ski, {\L}ukasz and Lasota, S{\l}awomir},
  title =	{{Bi-Reachability in Petri Nets with Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.31},
  URN =		{urn:nbn:de:0030-drops-208038},
  doi =		{10.4230/LIPIcs.CONCUR.2024.31},
  annote =	{Keywords: Petri nets, Petri nets with data, reachability, bi-reachability, reversible reachability, mutual reachability, orbit-finite sets}
}
Document
New Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski

Published in: LIPIcs, Volume 284, 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)


Abstract
We investigate the dimension-parametric complexity of the reachability problem in vector addition systems with states (VASS) and its extension with pushdown stack (pushdown VASS). Up to now, the problem is known to be F_d-hard for VASS of dimension 3d+2 (the complexity class F_d corresponds to the kth level of the fast-growing hierarchy), and no essentially better bound is known for pushdown VASS. We provide a new construction that improves the lower bound for VASS: F_d-hardness in dimension 2d+3. Furthermore, building on our new insights we show a new lower bound for pushdown VASS: F_d-hardness in dimension d/2 + 6. This dimension-parametric lower bound is strictly stronger than the upper bound for VASS, which suggests that the (still unknown) complexity of the reachability problem in pushdown VASS is higher than in plain VASS (where it is Ackermann-complete).

Cite as

Wojciech Czerwiński, Ismaël Jecker, Sławomir Lasota, Jérôme Leroux, and Łukasz Orlikowski. New Lower Bounds for Reachability in Vector Addition Systems. In 43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 284, pp. 35:1-35:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.FSTTCS.2023.35,
  author =	{Czerwi\'{n}ski, Wojciech and Jecker, Isma\"{e}l and Lasota, S{\l}awomir and Leroux, J\'{e}r\^{o}me and Orlikowski, {\L}ukasz},
  title =	{{New Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)},
  pages =	{35:1--35:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-304-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{284},
  editor =	{Bouyer, Patricia and Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2023.35},
  URN =		{urn:nbn:de:0030-drops-194088},
  doi =		{10.4230/LIPIcs.FSTTCS.2023.35},
  annote =	{Keywords: vector addition systems, reachability problem, pushdown vector addition system, lower bounds}
}
Document
Complete Volume
LIPIcs, Volume 243, CONCUR 2022, Complete Volume

Authors: Bartek Klin, Sławomir Lasota, and Anca Muscholl

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
LIPIcs, Volume 243, CONCUR 2022, Complete Volume

Cite as

33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 1-712, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{klin_et_al:LIPIcs.CONCUR.2022,
  title =	{{LIPIcs, Volume 243, CONCUR 2022, Complete Volume}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{1--712},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022},
  URN =		{urn:nbn:de:0030-drops-170623},
  doi =		{10.4230/LIPIcs.CONCUR.2022},
  annote =	{Keywords: LIPIcs, Volume 243, CONCUR 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Bartek Klin, Sławomir Lasota, and Anca Muscholl

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{klin_et_al:LIPIcs.CONCUR.2022.0,
  author =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.0},
  URN =		{urn:nbn:de:0030-drops-170631},
  doi =		{10.4230/LIPIcs.CONCUR.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem

Authors: Sławomir Lasota

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
Petri nets, equivalently presentable as vector addition systems with states, are an established model of concurrency with widespread applications. The reachability problem, where we ask whether from a given initial configuration there exists a sequence of valid execution steps reaching a given final configuration, is the central algorithmic problem for this model. The complexity of the problem has remained, until recently, one of the hardest open questions in verification of concurrent systems. A first upper bound has been provided only in 2015 by Leroux and Schmitz, then refined by the same authors to non-primitive recursive Ackermannian upper bound in 2019. The exponential space lower bound, shown by Lipton already in 1976, remained the only known for over 40 years until a breakthrough non-elementary lower bound by Czerwiński, Lasota, Lazic, Leroux and Mazowiecki in 2019. Finally, a matching Ackermannian lower bound announced this year by Czerwiński and Orlikowski, and independently by Leroux, established the complexity of the problem. Our primary contribution is an improvement of the former construction, making it conceptually simpler and more direct. On the way we improve the lower bound for vector addition systems with states in fixed dimension (or, equivalently, Petri nets with fixed number of places): while Czerwiński and Orlikowski prove F_k-hardness (hardness for kth level in Grzegorczyk Hierarchy) in dimension 6k, our simplified construction yields F_k-hardness already in dimension 3k+2.

Cite as

Sławomir Lasota. Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 46:1-46:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lasota:LIPIcs.STACS.2022.46,
  author =	{Lasota, S{\l}awomir},
  title =	{{Improved Ackermannian Lower Bound for the Petri Nets Reachability Problem}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{46:1--46:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.46},
  URN =		{urn:nbn:de:0030-drops-158561},
  doi =		{10.4230/LIPIcs.STACS.2022.46},
  annote =	{Keywords: Petri nets, reachability problem, vector addition systems}
}
Document
Parikh Images of Register Automata

Authors: Sławomir Lasota and Mohnish Pattathurajan

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
As it has been recently shown, Parikh images of languages of nondeterministic one-register automata are rational (but not semilinear in general), but it is still open if the property extends to all register automata. We identify a subclass of nondeterministic register automata, called hierarchical register automata (HRA), with the following two properties: every rational language is recognised by a HRA; and Parikh image of the language of every HRA is rational. In consequence, these two properties make HRA an automata-theoretic characterisation of languages of nondeterministic register automata with rational Parikh images.

Cite as

Sławomir Lasota and Mohnish Pattathurajan. Parikh Images of Register Automata. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 50:1-50:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{lasota_et_al:LIPIcs.FSTTCS.2021.50,
  author =	{Lasota, S{\l}awomir and Pattathurajan, Mohnish},
  title =	{{Parikh Images of Register Automata}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{50:1--50:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.50},
  URN =		{urn:nbn:de:0030-drops-155613},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.50},
  annote =	{Keywords: Sets with atoms, register automata, Parikh images, rational sets, hierarchical register automata}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Lower Bounds for Reachability in Vector Addition Systems

Authors: Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
We investigate computational complexity of the reachability problem for vector addition systems (or, equivalently, Petri nets), the central algorithmic problem in verification of concurrent systems. Concerning its complexity, after 40 years of stagnation, a non-elementary lower bound has been shown recently: the problem needs a tower of exponentials of time or space, where the height of tower is linear in the input size. We improve on this lower bound, by increasing the height of tower from linear to exponential. As a side-effect, we obtain better lower bounds for vector addition systems of fixed dimension.

Cite as

Wojciech Czerwiński, Sławomir Lasota, and Łukasz Orlikowski. Improved Lower Bounds for Reachability in Vector Addition Systems. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 128:1-128:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.ICALP.2021.128,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Orlikowski, {\L}ukasz},
  title =	{{Improved Lower Bounds for Reachability in Vector Addition Systems}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{128:1--128:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.128},
  URN =		{urn:nbn:de:0030-drops-141973},
  doi =		{10.4230/LIPIcs.ICALP.2021.128},
  annote =	{Keywords: Petri nets, vector addition systems, reachability problem}
}
Document
Determinisability of One-Clock Timed Automata

Authors: Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The deterministic membership problem for timed automata asks whether the timed language recognised by a nondeterministic timed automaton can be recognised by a deterministic timed automaton. We show that the problem is decidable when the input automaton is a one-clock nondeterministic timed automaton without epsilon transitions and the number of clocks of the deterministic timed automaton is fixed. We show that the problem in all the other cases is undecidable, i.e., when either 1) the input nondeterministic timed automaton has two clocks or more, or 2) it uses epsilon transitions, or 3) the number of clocks of the output deterministic automaton is not fixed.

Cite as

Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Determinisability of One-Clock Timed Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.CONCUR.2020.42,
  author =	{Clemente, Lorenzo and Lasota, S{\l}awomir and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{Determinisability of One-Clock Timed Automata}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.42},
  URN =		{urn:nbn:de:0030-drops-128542},
  doi =		{10.4230/LIPIcs.CONCUR.2020.42},
  annote =	{Keywords: Timed automata, determinisation, deterministic membership problem}
}
Document
Reachability in Fixed Dimension Vector Addition Systems with States

Authors: Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability. We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip},
  title =	{{Reachability in Fixed Dimension Vector Addition Systems with States}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48},
  URN =		{urn:nbn:de:0030-drops-128605},
  doi =		{10.4230/LIPIcs.CONCUR.2020.48},
  annote =	{Keywords: reachability problem, vector addition systems, Petri nets}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Timed Games and Deterministic Separability

Authors: Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study a generalisation of Büchi-Landweber games to the timed setting. The winning condition is specified by a non-deterministic timed automaton with epsilon transitions and only Player I can elapse time. We show that for fixed number of clocks and maximal numerical constant available to Player II, it is decidable whether she has a winning timed controller using these resources. More interestingly, we also show that the problem remains decidable even when the maximal numerical constant is not specified in advance, which is an important technical novelty not present in previous literature on timed games. We complement these two decidability result by showing undecidability when the number of clocks available to Player II is not fixed. As an application of timed games, and our main motivation to study them, we show that they can be used to solve the deterministic separability problem for nondeterministic timed automata with epsilon transitions. This is a novel decision problem about timed automata which has not been studied before. We show that separability is decidable when the number of clocks of the separating automaton is fixed and the maximal constant is not. The problem whether separability is decidable without bounding the number of clocks of the separator remains an interesting open problem.

Cite as

Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed Games and Deterministic Separability. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 121:1-121:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.ICALP.2020.121,
  author =	{Clemente, Lorenzo and Lasota, S{\l}awomir and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{Timed Games and Deterministic Separability}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{121:1--121:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.121},
  URN =		{urn:nbn:de:0030-drops-125282},
  doi =		{10.4230/LIPIcs.ICALP.2020.121},
  annote =	{Keywords: Timed automata, separability problems, timed games}
}
Document
New Pumping Technique for 2-Dimensional VASS

Authors: Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
We propose a new pumping technique for 2-dimensional vector addition systems with states (2-VASS) building on natural geometric properties of runs. We illustrate its applicability by reproving an exponential bound on the length of the shortest accepting run, and by proving a new pumping lemma for languages of 2-VASS. The technique is expected to be useful for settling questions concerning languages of 2-VASS, e.g., for establishing decidability status of the regular separability problem.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Christof Löding, and Radosław Piórkowski. New Pumping Technique for 2-Dimensional VASS. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 62:1-62:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.MFCS.2019.62,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and L\"{o}ding, Christof and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{New Pumping Technique for 2-Dimensional VASS}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{62:1--62:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.62},
  URN =		{urn:nbn:de:0030-drops-110066},
  doi =		{10.4230/LIPIcs.MFCS.2019.62},
  annote =	{Keywords: vector addition systems with states, pumping, decidability}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail