Search Results

Documents authored by Rieck, Christian


Document
The Lawn Mowing Problem: From Algebra to Algorithms

Authors: Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
For a given polygonal region P, the Lawn Mowing Problem (LMP) asks for a shortest tour T that gets within Euclidean distance 1/2 of every point in P; this is equivalent to computing a shortest tour for a unit-diameter cutter C that covers all of P. As a generalization of the Traveling Salesman Problem, the LMP is NP-hard; unlike the discrete TSP, however, the LMP has defied efforts to achieve exact solutions, due to its combination of combinatorial complexity with continuous geometry. We provide a number of new contributions that provide insights into the involved difficulties, as well as positive results that enable both theoretical and practical progress. (1) We show that the LMP is algebraically hard: it is not solvable by radicals over the field of rationals, even for the simple case in which P is a 2×2 square. This implies that it is impossible to compute exact optimal solutions under models of computation that rely on elementary arithmetic operations and the extraction of kth roots, and explains the perceived practical difficulty. (2) We exploit this algebraic analysis for the natural class of polygons with axis-parallel edges and integer vertices (i.e., polyominoes), highlighting the relevance of turn-cost minimization for Lawn Mowing tours, and leading to a general construction method for feasible tours. (3) We show that this construction method achieves theoretical worst-case guarantees that improve previous approximation factors for polyominoes. (4) We demonstrate the practical usefulness beyond polyominoes by performing an extensive practical study on a spectrum of more general benchmark polygons: We obtain solutions that are better than the previous best values by Fekete et al., for instance sizes up to 20 times larger.

Cite as

Sándor P. Fekete, Dominik Krupke, Michael Perk, Christian Rieck, and Christian Scheffer. The Lawn Mowing Problem: From Algebra to Algorithms. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 45:1-45:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ESA.2023.45,
  author =	{Fekete, S\'{a}ndor P. and Krupke, Dominik and Perk, Michael and Rieck, Christian and Scheffer, Christian},
  title =	{{The Lawn Mowing Problem: From Algebra to Algorithms}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{45:1--45:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.45},
  URN =		{urn:nbn:de:0030-drops-186985},
  doi =		{10.4230/LIPIcs.ESA.2023.45},
  annote =	{Keywords: Geometric optimization, covering problems, tour problems, lawn mowing, algebraic hardness, approximation algorithms, algorithm engineering}
}
Document
Efficiently Reconfiguring a Connected Swarm of Labeled Robots

Authors: Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
When considering motion planning for a swarm of n labeled robots, we need to rearrange a given start configuration into a desired target configuration via a sequence of parallel, continuous, collision-free robot motions. The objective is to reach the new configuration in a minimum amount of time; an important constraint is to keep the swarm connected at all times. Problems of this type have been considered before, with recent notable results achieving constant stretch for not necessarily connected reconfiguration: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, the total duration of an overall schedule can be bounded to 𝒪(d), which is optimal up to constant factors. However, constant stretch could only be achieved if disconnected reconfiguration is allowed, or for scaled configurations (which arise by increasing all dimensions of a given object by the same multiplicative factor) of unlabeled robots. We resolve these major open problems by (1) establishing a lower bound of Ω(√n) for connected, labeled reconfiguration and, most importantly, by (2) proving that for scaled arrangements, constant stretch for connected reconfiguration can be achieved. In addition, we show that (3) it is NP-hard to decide whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved.

Cite as

Sándor P. Fekete, Peter Kramer, Christian Rieck, Christian Scheffer, and Arne Schmidt. Efficiently Reconfiguring a Connected Swarm of Labeled Robots. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ISAAC.2022.17,
  author =	{Fekete, S\'{a}ndor P. and Kramer, Peter and Rieck, Christian and Scheffer, Christian and Schmidt, Arne},
  title =	{{Efficiently Reconfiguring a Connected Swarm of Labeled Robots}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{17:1--17:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.17},
  URN =		{urn:nbn:de:0030-drops-173028},
  doi =		{10.4230/LIPIcs.ISAAC.2022.17},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, makespan, connectivity, swarm robotics}
}
Document
The Dispersive Art Gallery Problem

Authors: Christian Rieck and Christian Scheffer

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We introduce a new variant of the art gallery problem that comes from safety issues. In this variant we are not interested in guard sets of smallest cardinality, but in guard sets with largest possible distances between these guards. To the best of our knowledge, this variant has not been considered before. We call it the Dispersive Art Gallery Problem. In particular, in the dispersive art gallery problem we are given a polygon 𝒫 and a real number 𝓁, and want to decide whether 𝒫 has a guard set such that every pair of guards in this set is at least a distance of 𝓁 apart. In this paper, we study the vertex guard variant of this problem for the class of polyominoes. We consider rectangular visibility and distances as geodesics in the L₁-metric. Our results are as follows. We give a (simple) thin polyomino such that every guard set has minimum pairwise distances of at most 3. On the positive side, we describe an algorithm that computes guard sets for simple polyominoes that match this upper bound, i.e., the algorithm constructs worst-case optimal solutions. We also study the computational complexity of computing guard sets that maximize the smallest distance between all pairs of guards within the guard sets. We prove that deciding whether there exists a guard set realizing a minimum pairwise distance for all pairs of guards of at least 5 in a given polyomino is NP-complete. We were also able to find an optimal dynamic programming approach that computes a guard set that maximizes the minimum pairwise distance between guards in tree-shaped polyominoes, i.e., computes optimal solutions; due to space constraints, details can be found in the full version of our paper [Christian Rieck and Christian Scheffer, 2022]. Because the shapes constructed in the NP-hardness reduction are thin as well (but have holes), this result completes the case for thin polyominoes.

Cite as

Christian Rieck and Christian Scheffer. The Dispersive Art Gallery Problem. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 67:1-67:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{rieck_et_al:LIPIcs.ISAAC.2022.67,
  author =	{Rieck, Christian and Scheffer, Christian},
  title =	{{The Dispersive Art Gallery Problem}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{67:1--67:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.67},
  URN =		{urn:nbn:de:0030-drops-173522},
  doi =		{10.4230/LIPIcs.ISAAC.2022.67},
  annote =	{Keywords: Art gallery, dispersion, polyominoes, NP-completeness, r-visibility, vertex guards, L₁-metric, worst-case optimal}
}
Document
Media Exposition
Space Ants: Episode II - Coordinating Connected Catoms (Media Exposition)

Authors: Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Benoît Piranda, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
How can a set of identical mobile agents coordinate their motions to transform their arrangement from a given starting to a desired goal configuration? We consider this question in the context of actual physical devices called Catoms, which can perform reconfiguration, but need to maintain connectivity at all times to ensure communication and energy supply. We demonstrate and animate algorithmic results, in particular a proof of hardness, as well as an algorithm that guarantees constant stretch for certain classes of arrangements: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is in 𝒪(d), which is optimal up to constant factors.

Cite as

Julien Bourgeois, Sándor P. Fekete, Ramin Kosfeld, Peter Kramer, Benoît Piranda, Christian Rieck, and Christian Scheffer. Space Ants: Episode II - Coordinating Connected Catoms (Media Exposition). In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 65:1-65:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bourgeois_et_al:LIPIcs.SoCG.2022.65,
  author =	{Bourgeois, Julien and Fekete, S\'{a}ndor P. and Kosfeld, Ramin and Kramer, Peter and Piranda, Beno\^{i}t and Rieck, Christian and Scheffer, Christian},
  title =	{{Space Ants: Episode II - Coordinating Connected Catoms}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{65:1--65:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.65},
  URN =		{urn:nbn:de:0030-drops-160732},
  doi =		{10.4230/LIPIcs.SoCG.2022.65},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, scaled shape, makespan, connectivity, swarm robotics}
}
Document
Connected Coordinated Motion Planning with Bounded Stretch

Authors: Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We consider the problem of coordinated motion planning for a swarm of simple, identical robots: From a given start grid configuration of robots, we need to reach a desired target configuration via a sequence of parallel, continuous, collision-free robot motions, such that the set of robots induces a connected grid graph at all integer times. The objective is to minimize the makespan of the motion schedule, i.e., to reach the new configuration in a minimum amount of time. We show that this problem is NP-hard, even for deciding whether a makespan of 2 can be achieved, while it is possible to check in polynomial time whether a makespan of 1 can be achieved. On the algorithmic side, we establish simultaneous constant-factor approximation for two fundamental parameters, by achieving constant stretch for constant scale. Scaled shapes (which arise by increasing all dimensions of a given object by the same multiplicative factor) have been considered in previous seminal work on self-assembly, often with unbounded or logarithmic scale factors; we provide methods for a generalized scale factor, bounded by a constant. Moreover, our algorithm achieves a constant stretch factor: If mapping the start configuration to the target configuration requires a maximum Manhattan distance of d, then the total duration of our overall schedule is 𝒪(d), which is optimal up to constant factors.

Cite as

Sándor P. Fekete, Phillip Keldenich, Ramin Kosfeld, Christian Rieck, and Christian Scheffer. Connected Coordinated Motion Planning with Bounded Stretch. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.ISAAC.2021.9,
  author =	{Fekete, S\'{a}ndor P. and Keldenich, Phillip and Kosfeld, Ramin and Rieck, Christian and Scheffer, Christian},
  title =	{{Connected Coordinated Motion Planning with Bounded Stretch}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.9},
  URN =		{urn:nbn:de:0030-drops-154423},
  doi =		{10.4230/LIPIcs.ISAAC.2021.9},
  annote =	{Keywords: Motion planning, parallel motion, bounded stretch, scaled shape, makespan, connectivity, swarm robotics}
}
Document
Media Exposition
Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition)

Authors: Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we consider recognition and reconfiguration of lattice-based cellular structures by very simple robots with only basic functionality. The underlying motivation is the construction and modification of space facilities of enormous dimensions, where the combination of new materials with extremely simple robots promises structures of previously unthinkable size and flexibility. We present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific results include methods for determining a bounding box, scaling a given arrangement, and adapting more general algorithms for transforming polyominoes.

Cite as

Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi. Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 73:1-73:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{abdelrahman_et_al:LIPIcs.SoCG.2020.73,
  author =	{Abdel-Rahman, Amira and Becker, Aaron T. and Biediger, Daniel E. and Cheung, Kenneth C. and Fekete, S\'{a}ndor P. and Gershenfeld, Neil A. and Hugo, Sabrina and Jenett, Benjamin and Keldenich, Phillip and Niehs, Eike and Rieck, Christian and Schmidt, Arne and Scheffer, Christian and Yannuzzi, Michael},
  title =	{{Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{73:1--73:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.73},
  URN =		{urn:nbn:de:0030-drops-122310},
  doi =		{10.4230/LIPIcs.SoCG.2020.73},
  annote =	{Keywords: Finite automata, reconfiguration, construction, scaling}
}
Document
Tilt Assembly: Algorithms for Micro-Factories that Build Objects with Uniform External Forces

Authors: Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, Christian Rieck, Christian Scheffer, and Arne Schmidt

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We present algorithmic results for the parallel assembly of many micro-scale objects in two and three dimensions from tiny particles, which has been proposed in the context of programmable matter and self-assembly for building high-yield micro-factories. The underlying model has particles moving under the influence of uniform external forces until they hit an obstacle; particles can bond when being forced together with another appropriate particle. Due to the physical and geometric constraints, not all shapes can be built in this manner; this gives rise to the Tilt Assembly Problem (TAP) of deciding constructibility. For simply-connected polyominoes P in 2D consisting of N unit-squares ("tiles"), we prove that TAP can be decided in O(N log N) time. For the optimization variant MaxTAP (in which the objective is to construct a subshape of maximum possible size), we show polyAPX-hardness: unless P=NP, MaxTAP cannot be approximated within a factor of N^(1/3); for tree-shaped structures, we give an N^(1/2)-approximation algorithm. For the efficiency of the assembly process itself, we show that any constructible shape allows pipelined assembly, which produces copies of P in O(1) amortized time, i.e., N copies of P in O(N) time steps. These considerations can be extended to three-dimensional objects: For the class of polycubes P we prove that it is NP-hard to decide whether it is possible to construct a path between two points of P; it is also NP-hard to decide constructibility of a polycube P. Moreover, it is expAPX-hard to maximize a path from a given start point.

Cite as

Aaron T. Becker, Sándor P. Fekete, Phillip Keldenich, Dominik Krupke, Christian Rieck, Christian Scheffer, and Arne Schmidt. Tilt Assembly: Algorithms for Micro-Factories that Build Objects with Uniform External Forces. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.ISAAC.2017.11,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P. and Keldenich, Phillip and Krupke, Dominik and Rieck, Christian and Scheffer, Christian and Schmidt, Arne},
  title =	{{Tilt Assembly: Algorithms for Micro-Factories that Build Objects with Uniform External Forces}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.11},
  URN =		{urn:nbn:de:0030-drops-82214},
  doi =		{10.4230/LIPIcs.ISAAC.2017.11},
  annote =	{Keywords: Programmable matter, micro-factories, tile assembly, tilt, approximation, hardness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail