Search Results

Documents authored by Roeloffzen, Marcel


Document
Segment Visibility Counting Queries in Polygons

Authors: Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Let P be a simple polygon with n vertices, and let A be a set of m points or line segments inside P. We develop data structures that can efficiently count the objects from A that are visible to a query point or a query segment. Our main aim is to obtain fast, O(polylog nm), query times, while using as little space as possible. In case the query is a single point, a simple visibility-polygon-based solution achieves O(log nm) query time using O(nm²) space. In case A also contains only points, we present a smaller, O(n + m^{2+ε} log n)-space, data structure based on a hierarchical decomposition of the polygon. Building on these results, we tackle the case where the query is a line segment and A contains only points. The main complication here is that the segment may intersect multiple regions of the polygon decomposition, and that a point may see multiple such pieces. Despite these issues, we show how to achieve O(log n log nm) query time using only O(nm^{2+ε} + n²) space. Finally, we show that we can even handle the case where the objects in A are segments with the same bounds.

Cite as

Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals. Segment Visibility Counting Queries in Polygons. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 58:1-58:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ISAAC.2022.58,
  author =	{Buchin, Kevin and Custers, Bram and van der Hoog, Ivor and L\"{o}ffler, Maarten and Popov, Aleksandr and Roeloffzen, Marcel and Staals, Frank},
  title =	{{Segment Visibility Counting Queries in Polygons}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{58:1--58:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.58},
  URN =		{urn:nbn:de:0030-drops-173431},
  doi =		{10.4230/LIPIcs.ISAAC.2022.58},
  annote =	{Keywords: Visibility, Data Structure, Polygons, Complexity}
}
Document
Uncertain Curve Simplification

Authors: Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence of exact points, each uncertain point is represented by a region which contains the (unknown) true location of the vertex. The regions we consider are disks, line segments, convex polygons, and discrete sets of points. We are interested in finding the shortest subsequence of uncertain points such that no matter what the true location of each uncertain point is, the resulting polygonal curve is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance. For both these distance measures, we present polynomial-time algorithms for this problem.

Cite as

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen. Uncertain Curve Simplification. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 26:1-26:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.MFCS.2021.26,
  author =	{Buchin, Kevin and L\"{o}ffler, Maarten and Popov, Aleksandr and Roeloffzen, Marcel},
  title =	{{Uncertain Curve Simplification}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.26},
  URN =		{urn:nbn:de:0030-drops-144666},
  doi =		{10.4230/LIPIcs.MFCS.2021.26},
  annote =	{Keywords: Curves, Uncertainty, Simplification, Fr\'{e}chet Distance, Hausdorff Distance}
}
Document
Track A: Algorithms, Complexity and Games
Fréchet Distance for Uncertain Curves

Authors: Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and Marcel Roeloffzen

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In this paper we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the continuous Fréchet distance, and the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound discrete Fréchet distance can be computed in polynomial time using dynamic programming. Furthermore, we show that computing the expected discrete or continuous Fréchet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when Δ/δ is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly δ-separated. Finally, we study the setting with Sakoe - Chiba bands, restricting the alignment of the two curves, and give polynomial-time algorithms for upper bound and expected (discrete) Fréchet distance for point-set-modelled uncertainty regions.

Cite as

Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and Marcel Roeloffzen. Fréchet Distance for Uncertain Curves. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 20:1-20:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ICALP.2020.20,
  author =	{Buchin, Kevin and Fan, Chenglin and L\"{o}ffler, Maarten and Popov, Aleksandr and Raichel, Benjamin and Roeloffzen, Marcel},
  title =	{{Fr\'{e}chet Distance for Uncertain Curves}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.20},
  URN =		{urn:nbn:de:0030-drops-124276},
  doi =		{10.4230/LIPIcs.ICALP.2020.20},
  annote =	{Keywords: Curves, Uncertainty, Fr\'{e}chet Distance, Hardness}
}
Document
Track A: Algorithms, Complexity and Games
Kinetic Geodesic Voronoi Diagrams in a Simple Polygon

Authors: Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the geodesic Voronoi diagram of a set S of n linearly moving sites inside a static simple polygon P with m vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then develop a kinetic data structure (KDS) that maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change. For both these structures we prove that the number of such changes is at most O(m³), and that this is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic data structures for both structures. Our data structures use linear space and process a worst-case optimal number of events. Our bisector KDS handles each event in O(log m) time, and our Voronoi center handles each event in O(log² m) time. Both structures can be extended to efficiently support updating the movement of the sites as well. Using these data structures as building blocks we obtain a compact KDS for maintaining the full geodesic Voronoi diagram.

Cite as

Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals. Kinetic Geodesic Voronoi Diagrams in a Simple Polygon. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 75:1-75:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{korman_et_al:LIPIcs.ICALP.2020.75,
  author =	{Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Staals, Frank},
  title =	{{Kinetic Geodesic Voronoi Diagrams in a Simple Polygon}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{75:1--75:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.75},
  URN =		{urn:nbn:de:0030-drops-124820},
  doi =		{10.4230/LIPIcs.ICALP.2020.75},
  annote =	{Keywords: kinetic data structure, simple polygon, geodesic voronoi diagram}
}
Document
Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

Authors: Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(n^omega, n^2 + nh log h + chi^2)) time, where omega<2.373 denotes the matrix multiplication exponent and chi in Omega(n) cap O(n^2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n^2 log n) time.

Cite as

Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen. Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 58:1-58:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{arseneva_et_al:LIPIcs.ISAAC.2018.58,
  author =	{Arseneva, Elena and Chiu, Man-Kwun and Korman, Matias and Markovic, Aleksandar and Okamoto, Yoshio and Ooms, Aur\'{e}lien and van Renssen, Andr\'{e} and Roeloffzen, Marcel},
  title =	{{Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{58:1--58:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.58},
  URN =		{urn:nbn:de:0030-drops-100060},
  doi =		{10.4230/LIPIcs.ISAAC.2018.58},
  annote =	{Keywords: Rectilinear link distance, polygonal domain, diameter, radius}
}
Document
Routing in Polygonal Domains

Authors: Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max Willert

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for each vertex. Then, we must be able to route a data packet between any two vertices p and q of P , where each step must use only the label of the target node q and the routing table of the current node. For any fixed eps > 0, we pre ent a routing scheme that always achieves a routing path that exceeds the shortest path by a factor of at most 1 + eps. The labels have O(log n) bits, and the routing tables are of size O((eps^{-1} + h) log n). The preprocessing time is O(n^2 log n + hn^2 + eps^{-1}hn). It can be improved to O(n 2 + eps^{-1}n) for simple polygons.

Cite as

Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max Willert. Routing in Polygonal Domains. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 10:1-10:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{banyassady_et_al:LIPIcs.ISAAC.2017.10,
  author =	{Banyassady, Bahareh and Chiu, Man-Kwun and Korman, Matias and Mulzer, Wolfgang and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Seiferth, Paul and Stein, Yannik and Vogtenhuber, Birgit and Willert, Max},
  title =	{{Routing in Polygonal Domains}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{10:1--10:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.10},
  URN =		{urn:nbn:de:0030-drops-82379},
  doi =		{10.4230/LIPIcs.ISAAC.2017.10},
  annote =	{Keywords: polygonal domains, routing scheme, small stretch,Yao graph}
}
Document
Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces

Authors: Mark de Berg, Ade Gunawan, and Marcel Roeloffzen

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We present a new algorithm for the widely used density-based clustering method DBScan. Our algorithm computes the DBScan-clustering in O(n log n) time in R^2, irrespective of the scale parameter \eps, but assuming the second parameter MinPts is set to a fixed constant, as is the case in practice. We also present an O(n log n) randomized algorithm for HDBScan in the plane---HDBScans is a hierarchical version of DBScan introduced recently---and we show how to compute an approximate version of HDBScan in near-linear time in any fixed dimension.

Cite as

Mark de Berg, Ade Gunawan, and Marcel Roeloffzen. Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 25:1-25:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.25,
  author =	{de Berg, Mark and Gunawan, Ade and Roeloffzen, Marcel},
  title =	{{Faster DBScan and HDBScan in Low-Dimensional Euclidean Spaces}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{25:1--25:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.25},
  URN =		{urn:nbn:de:0030-drops-82102},
  doi =		{10.4230/LIPIcs.ISAAC.2017.25},
  annote =	{Keywords: Density-based clustering, hierarchical clustering}
}
Document
Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points

Authors: Mark de Berg, Tim Leijsen, Aleksandar Markovic, André van Renssen, Marcel Roeloffzen, and Gerhard Woeginger

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
We introduce the fully-dynamic conflict-free coloring problem for a set S of intervals in R^1 with respect to points, where the goal is to maintain a conflict-free coloring for S under insertions and deletions. A coloring is conflict-free if for each point p contained in some interval, p is contained in an interval whose color is not shared with any other interval containing p. We investigate trade-offs between the number of colors used and the number of intervals that are recolored upon insertion or deletion of an interval. Our results include: - a lower bound on the number of recolorings as a function of the number of colors, which implies that with O(1) recolorings per update the worst-case number of colors is Omega(log n/log log n), and that any strategy using O(1/epsilon) colors needs Omega(epsilon n^epsilon) recolorings; - a coloring strategy that uses O(log n) colors at the cost of O(log n) recolorings, and another strategy that uses O(1/epsilon) colors at the cost of O(n^epsilon/epsilon) recolorings; - stronger upper and lower bounds for special cases. We also consider the kinetic setting where the intervals move continuously (but there are no insertions or deletions); here we show how to maintain a coloring with only four colors at the cost of three recolorings per event and show this is tight.

Cite as

Mark de Berg, Tim Leijsen, Aleksandar Markovic, André van Renssen, Marcel Roeloffzen, and Gerhard Woeginger. Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 26:1-26:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2017.26,
  author =	{de Berg, Mark and Leijsen, Tim and Markovic, Aleksandar and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Woeginger, Gerhard},
  title =	{{Fully-Dynamic and Kinetic Conflict-Free Coloring of Intervals with Respect to Points}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{26:1--26:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.26},
  URN =		{urn:nbn:de:0030-drops-82683},
  doi =		{10.4230/LIPIcs.ISAAC.2017.26},
  annote =	{Keywords: Conflict-free colorings, Dynamic data structures, Kinetic data structures}
}
Document
Improved Time-Space Trade-Offs for Computing Voronoi Diagrams

Authors: Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, and Yannik Stein

Published in: LIPIcs, Volume 66, 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)


Abstract
Let P be a planar n-point set in general position. For k between 1 and n-1, the Voronoi diagram of order k is obtained by subdividing the plane into regions such that points in the same cell have the same set of nearest k neighbors in P. The (nearest point) Voronoi diagram (NVD) and the farthest point Voronoi diagram (FVD) are the particular cases of k=1 and k=n-1, respectively. It is known that the family of all higher-order Voronoi diagrams of order 1 to K for P can be computed in total time O(n K^2 + n log n) using O(K^2(n-K)) space. Also NVD and FVD can be computed in O(n log n) time using O(n) space. For s in {1, ..., n}, an s-workspace algorithm has random access to a read-only array with the sites of P in arbitrary order. Additionally, the algorithm may use O(s) words of Theta(log n) bits each for reading and writing intermediate data. The output can be written only once and cannot be accessed afterwards. We describe a deterministic s-workspace algorithm for computing an NVD and also an FVD for P that runs in O((n^2/s) log s) time. Moreover, we generalize our s-workspace algorithm for computing the family of all higher-order Voronoi diagrams of P up to order K in O(sqrt(s)) in total time O( (n^2 K^6 / s) log^(1+epsilon)(K) (log s / log K)^(O(1)) ) for any fixed epsilon > 0. Previously, for Voronoi diagrams, the only known s-workspace algorithm was to find an NVD for P in expected time O((n^2/s) log s + n log s log^*s). Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.

Cite as

Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, and Yannik Stein. Improved Time-Space Trade-Offs for Computing Voronoi Diagrams. In 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 66, pp. 9:1-9:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{banyassady_et_al:LIPIcs.STACS.2017.9,
  author =	{Banyassady, Bahareh and Korman, Matias and Mulzer, Wolfgang and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Seiferth, Paul and Stein, Yannik},
  title =	{{Improved Time-Space Trade-Offs for Computing Voronoi Diagrams}},
  booktitle =	{34th Symposium on Theoretical Aspects of Computer Science (STACS 2017)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-028-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{66},
  editor =	{Vollmer, Heribert and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2017.9},
  URN =		{urn:nbn:de:0030-drops-70249},
  doi =		{10.4230/LIPIcs.STACS.2017.9},
  annote =	{Keywords: memory-constrained model, Voronoi diagram, time-space trade-off}
}
Document
Packing Short Plane Spanning Trees in Complete Geometric Graphs

Authors: Oswin Aichholzer, Thomas Hackl, Matias Korman, Alexander Pilz, Günter Rote, André van Renssen, Marcel Roeloffzen, and Birgit Vogtenhuber

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
Given a set of points in the plane, we want to establish a connection network between these points that consists of several disjoint layers. Motivated by sensor networks, we want that each layer is spanning and plane, and that no edge is very long (when compared to the minimum length needed to obtain a spanning graph). We consider two different approaches: first we show an almost optimal centralized approach to extract two trees. Then we show a constant factor approximation for a distributed model in which each point can compute its adjacencies using only local information. This second approach may create cycles, but maintains planarity.

Cite as

Oswin Aichholzer, Thomas Hackl, Matias Korman, Alexander Pilz, Günter Rote, André van Renssen, Marcel Roeloffzen, and Birgit Vogtenhuber. Packing Short Plane Spanning Trees in Complete Geometric Graphs. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 9:1-9:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.ISAAC.2016.9,
  author =	{Aichholzer, Oswin and Hackl, Thomas and Korman, Matias and Pilz, Alexander and Rote, G\"{u}nter and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Vogtenhuber, Birgit},
  title =	{{Packing Short Plane Spanning Trees in Complete Geometric Graphs}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.9},
  URN =		{urn:nbn:de:0030-drops-67823},
  doi =		{10.4230/LIPIcs.ISAAC.2016.9},
  annote =	{Keywords: Geometric Graphs, Graph Packing, Plane Graphs, Minimum Spanning Tree, Bottleneck Edge}
}
Document
On Interference Among Moving Sensors and Related Problems

Authors: Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We show that for any set of n moving points in R^d and any parameter 2<=k<n, one can select a fixed non-empty subset of the points of size O(k log k), such that the Voronoi diagram of this subset is "balanced" at any given time (i.e., it contains O(n/k) points per cell). We also show that the bound O(k log k) is near optimal even for the one dimensional case in which points move linearly in time. As an application, we show that one can assign communication radii to the sensors of a network of $n$ moving sensors so that at any given time, their interference is O( (n log n)^0.5). This is optimal up to an O((log n)^0.5) factor.

Cite as

Jean-Lou De Carufel, Matthew J. Katz, Matias Korman, André van Renssen, Marcel Roeloffzen, and Shakhar Smorodinsky. On Interference Among Moving Sensors and Related Problems. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 34:1-34:11, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{decarufel_et_al:LIPIcs.ESA.2016.34,
  author =	{De Carufel, Jean-Lou and Katz, Matthew J. and Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Smorodinsky, Shakhar},
  title =	{{On Interference Among Moving Sensors and Related Problems}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.34},
  URN =		{urn:nbn:de:0030-drops-63850},
  doi =		{10.4230/LIPIcs.ESA.2016.34},
  annote =	{Keywords: Range spaces, Voronoi diagrams, moving points, facility location, interference minimization}
}
Document
Time-Space Trade-offs for Triangulating a Simple Polygon

Authors: Boris Aronov, Matias Korman, Simon Pratt, André van Renssen, and Marcel Roeloffzen

Published in: LIPIcs, Volume 53, 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)


Abstract
An s-workspace algorithm is an algorithm that has read-only access to the values of the input, write-only access to the output, and only uses O(s) additional words of space. We give a randomized s-workspace algorithm for triangulating a simple polygon P of n vertices, for any s up to n. The algorithm runs in O(n^2/s+n(log s)log^5(n/s)) expected time using O(s) variables, for any s up to n. In particular, the algorithm runs in O(n^2/s) expected time for most values of s.

Cite as

Boris Aronov, Matias Korman, Simon Pratt, André van Renssen, and Marcel Roeloffzen. Time-Space Trade-offs for Triangulating a Simple Polygon. In 15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 53, pp. 30:1-30:12, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SWAT.2016.30,
  author =	{Aronov, Boris and Korman, Matias and Pratt, Simon and van Renssen, André and Roeloffzen, Marcel},
  title =	{{Time-Space Trade-offs for Triangulating a Simple Polygon}},
  booktitle =	{15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016)},
  pages =	{30:1--30:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-011-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{53},
  editor =	{Pagh, Rasmus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2016.30},
  URN =		{urn:nbn:de:0030-drops-60522},
  doi =		{10.4230/LIPIcs.SWAT.2016.30},
  annote =	{Keywords: simple polygon, triangulation, shortest path, time-space trade-off}
}
Document
Hanabi is NP-complete, Even for Cheaters who Look at Their Cards

Authors: Jean-Francois Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van Renssen, Marcel Roeloffzen, and Yushi Uno

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)


Abstract
This paper studies a cooperative card game called Hanabi from an algorithmic combinatorial game theory viewpoint. The aim of the game is to play cards from 1 to n in increasing order (this has to be done independently in c different colors). Cards are drawn from a deck one by one. Drawn cards are either immediately played, discarded or stored for future use (overall each player can store up to h cards). The main feature of the game is that players know the cards their partners hold (but not theirs. This information must be shared through hints). We introduce a simplified mathematical model of a single-player version of the game, and show several complexity results: the game is intractable in a general setting even if we forego with the hidden information aspect of the game. On the positive side, the game can be solved in linear time for some interesting restricted cases (i.e., for small values of h and c).

Cite as

Jean-Francois Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van Renssen, Marcel Roeloffzen, and Yushi Uno. Hanabi is NP-complete, Even for Cheaters who Look at Their Cards. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 4:1-4:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{baffier_et_al:LIPIcs.FUN.2016.4,
  author =	{Baffier, Jean-Francois and Chiu, Man-Kwun and Diez, Yago and Korman, Matias and Mitsou, Valia and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Uno, Yushi},
  title =	{{Hanabi is NP-complete, Even for Cheaters who Look at Their Cards}},
  booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-005-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{49},
  editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.4},
  URN =		{urn:nbn:de:0030-drops-58644},
  doi =		{10.4230/LIPIcs.FUN.2016.4},
  annote =	{Keywords: algorithmic combinatorial game theory, sorting}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail