Search Results

Documents authored by Thiemann, René


Document
A Verified Algorithm for Deciding Pattern Completeness

Authors: René Thiemann and Akihisa Yamada

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Pattern completeness is the property that the left-hand sides of a functional program cover all cases w.r.t. pattern matching. In the context of term rewriting a related notion is quasi-reducibility, a prerequisite if one wants to perform ground confluence proofs by rewriting induction. In order to certify such confluence proofs, we develop a novel algorithm that decides pattern completeness and that can be used to ensure quasi-reducibility. One of the advantages of the proposed algorithm is its simple structure: it is similar to that of a regular matching algorithm and, unlike an existing decision procedure for quasi-reducibility, it avoids enumerating all terms up to a given depth. Despite the simple structure, proving the correctness of the algorithm is not immediate. Therefore we formalize the algorithm and verify its correctness using the proof assistant Isabelle/HOL. To this end, we not only verify some auxiliary algorithms, but also design an Isabelle library on sorted term rewriting. Moreover, we export the verified code in Haskell and experimentally evaluate its performance. We observe that our algorithm significantly outperforms existing algorithms, even including the pattern completeness check of the GHC Haskell compiler.

Cite as

René Thiemann and Akihisa Yamada. A Verified Algorithm for Deciding Pattern Completeness. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.FSCD.2024.27,
  author =	{Thiemann, Ren\'{e} and Yamada, Akihisa},
  title =	{{A Verified Algorithm for Deciding Pattern Completeness}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.27},
  URN =		{urn:nbn:de:0030-drops-203566},
  doi =		{10.4230/LIPIcs.FSCD.2024.27},
  annote =	{Keywords: Isabelle/HOL, pattern matching, term rewriting}
}
Document
Complete Volume
LIPIcs, Volume 268, ITP 2023, Complete Volume

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
LIPIcs, Volume 268, ITP 2023, Complete Volume

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 1-660, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{naumowicz_et_al:LIPIcs.ITP.2023,
  title =	{{LIPIcs, Volume 268, ITP 2023, Complete Volume}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{1--660},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023},
  URN =		{urn:nbn:de:0030-drops-183747},
  doi =		{10.4230/LIPIcs.ITP.2023},
  annote =	{Keywords: LIPIcs, Volume 268, ITP 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{naumowicz_et_al:LIPIcs.ITP.2023.0,
  author =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.0},
  URN =		{urn:nbn:de:0030-drops-183755},
  doi =		{10.4230/LIPIcs.ITP.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Certifying the Weighted Path Order (Invited Talk)

Authors: René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
The weighted path order (WPO) unifies and extends several termination proving techniques that are known in term rewriting. Consequently, the first tool implementing WPO could prove termination of rewrite systems for which all previous tools failed. However, we should not blindly trust such results, since there might be problems with the implementation or the paper proof of WPO. In this work, we increase the reliability of these automatically generated proofs. To this end, we first formally prove the properties of WPO in Isabelle/HOL, and then develop a verified algorithm to certify termination proofs that are generated by tools using WPO. We also include support for max-polynomial interpretations, an important ingredient in WPO. Here we establish a connection to an existing verified SMT solver. Moreover, we extend the termination tools NaTT and TTT2, so that they can now generate certifiable WPO proofs.

Cite as

René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada. Certifying the Weighted Path Order (Invited Talk). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.FSCD.2020.4,
  author =	{Thiemann, Ren\'{e} and Sch\"{o}pf, Jonas and Sternagel, Christian and Yamada, Akihisa},
  title =	{{Certifying the Weighted Path Order}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.4},
  URN =		{urn:nbn:de:0030-drops-123263},
  doi =		{10.4230/LIPIcs.FSCD.2020.4},
  annote =	{Keywords: certification, Isabelle/HOL, reduction order, termination analysis}
}
Document
AC Dependency Pairs Revisited

Authors: Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
Rewriting modulo AC, i.e., associativity and/or commutativity of certain symbols, is among the most frequently used extensions of term rewriting by equational theories. In this paper we present a generalization of the dependency pair framework for termination analysis to rewriting modulo AC. It subsumes existing variants of AC dependency pairs, admits standard dependency graph analyses, and in particular enjoys the minimality property in the standard sense. As a direct benefit, important termination techniques are easily extended; we describe usable rules and the subterm criterion for AC termination, which properly generalize the non-AC versions. We also perform these extensions within IsaFoR - the Isabelle formalization of rewriting - and thereby provide the first formalization of AC dependency pairs. Consequently, our certifier CeTA now supports checking proofs of AC termination.

Cite as

Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari. AC Dependency Pairs Revisited. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{yamada_et_al:LIPIcs.CSL.2016.8,
  author =	{Yamada, Akihisa and Sternagel, Christian and Thiemann, Ren\'{e} and Kusakari, Keiichirou},
  title =	{{AC Dependency Pairs Revisited}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.8},
  URN =		{urn:nbn:de:0030-drops-65488},
  doi =		{10.4230/LIPIcs.CSL.2016.8},
  annote =	{Keywords: Equational Rewriting, Termination, Dependency Pairs, Certification}
}
Document
Certification of Complexity Proofs using CeTA

Authors: Martin Avanzini, Christian Sternagel, and René Thiemann

Published in: LIPIcs, Volume 36, 26th International Conference on Rewriting Techniques and Applications (RTA 2015)


Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting, where certifiers support most available techniques. In complexity analysis, the situation is quite different. Although tools support certification in principle, current certifiers implement only the most basic technique, namely, suitably tamed versions of reduction orders. As a consequence, only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified. To improve upon this situation, we formalized a framework for the certification of modular complexity proofs and incorporated it into CeTA. We report on this extension and present the newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable rules, and usable replacement maps), resulting in a significant increase in the number of certifiable complexity proofs. During our work we detected conflicts in theoretical results as well as bugs in existing complexity tools.

Cite as

Martin Avanzini, Christian Sternagel, and René Thiemann. Certification of Complexity Proofs using CeTA. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 36, pp. 23-39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2015.23,
  author =	{Avanzini, Martin and Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Certification of Complexity Proofs using CeTA}},
  booktitle =	{26th International Conference on Rewriting Techniques and Applications (RTA 2015)},
  pages =	{23--39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-85-9},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{36},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2015.23},
  URN =		{urn:nbn:de:0030-drops-51875},
  doi =		{10.4230/LIPIcs.RTA.2015.23},
  annote =	{Keywords: complexity analysis, certification, match-bounds, weak dependency pairs, dependency tuples, usable rules, usable replacement maps}
}
Document
Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion

Authors: Christian Sternagel and René Thiemann

Published in: LIPIcs, Volume 21, 24th International Conference on Rewriting Techniques and Applications (RTA 2013)


Abstract
We present extensions of our Isabelle Formalization of Rewriting that cover two historically related concepts: the Knuth-Bendix order and the Knuth-Bendix completion procedure. The former, besides being the first development of its kind in a proof assistant, is based on a generalized version of the Knuth-Bendix order. We compare our version to variants from the literature and show all properties required to certify termination proofs of TRSs. The latter comprises the formalization of important facts that are related to completion, like Birkhoff's theorem, the critical pair theorem, and a soundness proof of completion, showing that the strict encompassment condition is superfluous for finite runs. As a result, we are able to certify completion proofs.

Cite as

Christian Sternagel and René Thiemann. Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion. In 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 21, pp. 287-302, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{sternagel_et_al:LIPIcs.RTA.2013.287,
  author =	{Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion}},
  booktitle =	{24th International Conference on Rewriting Techniques and Applications (RTA 2013)},
  pages =	{287--302},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-53-8},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{21},
  editor =	{van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.287},
  URN =		{urn:nbn:de:0030-drops-40685},
  doi =		{10.4230/LIPIcs.RTA.2013.287},
  annote =	{Keywords: certification, completion, confluence, termination}
}
Document
On the Formalization of Termination Techniques based on Multiset Orderings

Authors: René Thiemann, Guillaume Allais, and Julian Nagele

Published in: LIPIcs, Volume 15, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) (2012)


Abstract
Multiset orderings are a key ingredient in certain termination techniques like the recursive path ordering and a variant of size-change termination. In order to integrate these techniques in a certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting. To this end, it was required to extend the existing formalization on multiset orderings towards a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been established, although only after fixing some definitions. Concerning efficiency, it is known that the search for suitable parameters for both techniques is NP-hard. We show that checking the correct application of the techniques--where all parameters are provided--is also NP-hard, since the problem of deciding the generalized multiset ordering is NP-hard.

Cite as

René Thiemann, Guillaume Allais, and Julian Nagele. On the Formalization of Termination Techniques based on Multiset Orderings. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 15, pp. 339-354, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.RTA.2012.339,
  author =	{Thiemann, Ren\'{e} and Allais, Guillaume and Nagele, Julian},
  title =	{{On the Formalization of Termination Techniques based on Multiset Orderings}},
  booktitle =	{23rd International Conference on Rewriting Techniques and Applications (RTA'12)},
  pages =	{339--354},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-38-5},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{15},
  editor =	{Tiwari, Ashish},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2012.339},
  URN =		{urn:nbn:de:0030-drops-35029},
  doi =		{10.4230/LIPIcs.RTA.2012.339},
  annote =	{Keywords: formalization, term rewriting, termination, orderings}
}
Document
Modular and Certified Semantic Labeling and Unlabeling

Authors: Christian Sternagel and René Thiemann

Published in: LIPIcs, Volume 10, 22nd International Conference on Rewriting Techniques and Applications (RTA'11) (2011)


Abstract
Semantic labeling is a powerful transformation technique to prove termination of term rewrite systems. The dual technique is unlabeling. For unlabeling it is essential to drop the so called decreasing rules which sometimes have to be added when applying semantic labeling. We indicate two problems concerning unlabeling and present our solutions. The first problem is that currently unlabeling cannot be applied as a modular step, since the decreasing rules are determined by a semantic labeling step which may have taken place much earlier. To this end, we give an implicit definition of decreasing rules that does not depend on any knowledge about preceding labelings. The second problem is that unlabeling is in general unsound. To solve this issue, we introduce the notion of extended termination problems. Moreover, we show how existing termination techniques can be lifted to operate on extended termination problems. All our proofs have been formalized in Isabelle/HOL as part of the IsaFoR/CeTA project.

Cite as

Christian Sternagel and René Thiemann. Modular and Certified Semantic Labeling and Unlabeling. In 22nd International Conference on Rewriting Techniques and Applications (RTA'11). Leibniz International Proceedings in Informatics (LIPIcs), Volume 10, pp. 329-344, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{sternagel_et_al:LIPIcs.RTA.2011.329,
  author =	{Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Modular and Certified Semantic Labeling and Unlabeling}},
  booktitle =	{22nd International Conference on Rewriting Techniques and Applications (RTA'11)},
  pages =	{329--344},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-30-9},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{10},
  editor =	{Schmidt-Schauss, Manfred},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2011.329},
  URN =		{urn:nbn:de:0030-drops-31333},
  doi =		{10.4230/LIPIcs.RTA.2011.329},
  annote =	{Keywords: semantic labeling, certification, term rewriting, unlabeling}
}
Document
Certified Subterm Criterion and Certified Usable Rules

Authors: Christian Sternagel and René Thiemann

Published in: LIPIcs, Volume 6, Proceedings of the 21st International Conference on Rewriting Techniques and Applications (2010)


Abstract
In this paper we present our formalization of two important termination techniques for term rewrite systems: the subterm criterion and the reduction pair processor in combination with usable rules. For both techniques we developed executable check functions in the theorem prover Isabelle/HOL which can certify the correct application of these techniques in some given termination proof. As there are several variants of usable rules we designed our check function in such a way that it accepts all known variants, even those which are not explicitly spelled out in previous papers. We integrated our formalization in the publicly available IsaFoR-library. This led to a significant increase in the power of CeTA, the corresponding certified termination proof checker that is extracted from IsaFoR.

Cite as

Christian Sternagel and René Thiemann. Certified Subterm Criterion and Certified Usable Rules. In Proceedings of the 21st International Conference on Rewriting Techniques and Applications. Leibniz International Proceedings in Informatics (LIPIcs), Volume 6, pp. 325-340, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{sternagel_et_al:LIPIcs.RTA.2010.325,
  author =	{Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Certified Subterm Criterion and Certified Usable Rules}},
  booktitle =	{Proceedings of the 21st International Conference on Rewriting Techniques and Applications},
  pages =	{325--340},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-18-7},
  ISSN =	{1868-8969},
  year =	{2010},
  volume =	{6},
  editor =	{Lynch, Christopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2010.325},
  URN =		{urn:nbn:de:0030-drops-26611},
  doi =		{10.4230/LIPIcs.RTA.2010.325},
  annote =	{Keywords: Term Rewriting, Certification, Termination, Theorem Proving}
}
Document
Decision Procedures for Loop Detection

Authors: René Thiemann, Jürgen Giesl, and Peter Schneider-Kamp

Published in: Dagstuhl Seminar Proceedings, Volume 7401, Deduction and Decision Procedures (2007)


Abstract
The dependency pair technique is a powerful modular method for automated termination proofs of term rewrite systems. We first show that dependency pairs are also suitable for disproving termination: loops can be detected more easily. In a second step we analyze how to disprove innermost termination. Here, we present a novel procedure to decide whether a given loop is an innermost loop. All results have been implemented in the termination prover AProVE.

Cite as

René Thiemann, Jürgen Giesl, and Peter Schneider-Kamp. Decision Procedures for Loop Detection. In Deduction and Decision Procedures. Dagstuhl Seminar Proceedings, Volume 7401, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:DagSemProc.07401.3,
  author =	{Thiemann, Ren\'{e} and Giesl, J\"{u}rgen and Schneider-Kamp, Peter},
  title =	{{Decision Procedures for Loop Detection}},
  booktitle =	{Deduction and Decision Procedures},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7401},
  editor =	{Franz Baader and Byron Cook and J\"{u}rgen Giesl and Robert Nieuwenhuis},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07401.3},
  URN =		{urn:nbn:de:0030-drops-12469},
  doi =		{10.4230/DagSemProc.07401.3},
  annote =	{Keywords: Non-Termination, Decision Procedures, Term Rewriting, Dependency Pairs}
}
Document
Implementing RPO and POLO using SAT

Authors: Peter Schneider-Kamp, Carsten Fuhs, René Thiemann, Jürgen Giesl, Elena Annov, Michael Codish, Aart Middeldorp, and Harald Zankl

Published in: Dagstuhl Seminar Proceedings, Volume 7401, Deduction and Decision Procedures (2007)


Abstract
Well-founded orderings are the most basic, but also most important ingredient to virtually all termination analyses. The recursive path order with status (RPO) and polynomial interpretations (POLO) are the two classes that are the most popular in the termination analysis of term rewrite systems. Numerous fully automated search algorithms for these classes have therefore been devised and implemented in termination tools. Unfortunately, the performance of these algorithms on all but the smallest termination problems has been lacking. E.g., recently developed transformations from programming languages like Haskell or Prolog allow to apply termination tools for term rewrite systems to real programming languages. The results of the transformations are often of non-trivial size, though, and cannot be handled efficiently by the existing algorithms. The need for more efficient search algorithms has triggered research in reducing these search problems into decision problems for which more efficient algorithms already exist. Here, we introduce an encoding of RPO and POLO to the satisfiability of propositional logic (SAT). We implemented these encodings in our termination tool AProVE. Extensive experiments have shown that one can obtain speedups in orders of magnitude by this encoding and the application of modern SAT solvers. The talk is based on joint work with Elena Annov, Mike Codish, Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, René Thiemann, and Harald Zankl.

Cite as

Peter Schneider-Kamp, Carsten Fuhs, René Thiemann, Jürgen Giesl, Elena Annov, Michael Codish, Aart Middeldorp, and Harald Zankl. Implementing RPO and POLO using SAT. In Deduction and Decision Procedures. Dagstuhl Seminar Proceedings, Volume 7401, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{schneiderkamp_et_al:DagSemProc.07401.5,
  author =	{Schneider-Kamp, Peter and Fuhs, Carsten and Thiemann, Ren\'{e} and Giesl, J\"{u}rgen and Annov, Elena and Codish, Michael and Middeldorp, Aart and Zankl, Harald},
  title =	{{Implementing RPO and POLO using SAT}},
  booktitle =	{Deduction and Decision Procedures},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7401},
  editor =	{Franz Baader and Byron Cook and J\"{u}rgen Giesl and Robert Nieuwenhuis},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07401.5},
  URN =		{urn:nbn:de:0030-drops-12491},
  doi =		{10.4230/DagSemProc.07401.5},
  annote =	{Keywords: Termination, SAT, recursive path order, polynomial interpretation}
}
Document
Termination of Programs using Term Rewriting and SAT Solving

Authors: Jürgen Giesl, Peter Schneider-Kamp, René Thiemann, Stephan Swiderski, Manh Thang Nguyen, Daniel De Schreye, and Alexander Serebrenik

Published in: Dagstuhl Seminar Proceedings, Volume 7401, Deduction and Decision Procedures (2007)


Abstract
There are many powerful techniques for automated termination analysis of term rewrite systems (TRSs). However, up to now they have hardly been used for real programming languages. In this talk, we describe recent results which permit the application of existing techniques from term rewriting in order to prove termination of programs. We discuss two possible approaches: 1. One could translate programs into TRSs and then use existing tools to verify termination of the resulting TRSs. 2. One could adapt TRS-techniques to the respective programming languages in order to analyze programs directly. We present such approaches for the functional language Haskell and the logic language Prolog. Our results have been implemented in the termination provers AProVE and Polytool. In order to handle termination problems resulting from real programs, these provers had to be coupled with modern SAT solvers, since the automation of the TRS-termination techniques had to improve significantly. Our resulting termination analyzers are currently the most powerful ones for Haskell and Prolog.

Cite as

Jürgen Giesl, Peter Schneider-Kamp, René Thiemann, Stephan Swiderski, Manh Thang Nguyen, Daniel De Schreye, and Alexander Serebrenik. Termination of Programs using Term Rewriting and SAT Solving. In Deduction and Decision Procedures. Dagstuhl Seminar Proceedings, Volume 7401, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{giesl_et_al:DagSemProc.07401.7,
  author =	{Giesl, J\"{u}rgen and Schneider-Kamp, Peter and Thiemann, Ren\'{e} and Swiderski, Stephan and Nguyen, Manh Thang and De Schreye, Daniel and Serebrenik, Alexander},
  title =	{{Termination of Programs using Term Rewriting and SAT Solving}},
  booktitle =	{Deduction and Decision Procedures},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{7401},
  editor =	{Franz Baader and Byron Cook and J\"{u}rgen Giesl and Robert Nieuwenhuis},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.07401.7},
  URN =		{urn:nbn:de:0030-drops-12481},
  doi =		{10.4230/DagSemProc.07401.7},
  annote =	{Keywords: Termination, Term Rewriting, Haskell, Prolog, SAT Solving}
}
Document
Proving and Disproving Termination in the Dependency Pair Framework

Authors: Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp

Published in: Dagstuhl Seminar Proceedings, Volume 5431, Deduction and Applications (2006)


Abstract
The dependency pair framework is a new general concept to integrate arbitrary techniques for termination analysis of term rewriting. In this way, the benefits of different techniques can be combined and their modularity and power are increased significantly. Moreover, this framework facilitates the development of new methods for termination analysis. Traditionally, the research on termination focused on methods which prove termination and there were hardly any approaches for disproving termination. We show that with the dependency pair framework, one can combine the search for a proof and for a disproof of termination. In this way, we obtain the first powerful method which can also verify non-termination of term rewrite systems. We implemented and evaluated our contributions in the automated termination prover AProVE. Due to these results, AProVE was the winning tool in the International Competition of Termination Provers 2005, both for proving and for disproving termination of term rewriting.

Cite as

Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and Disproving Termination in the Dependency Pair Framework. In Deduction and Applications. Dagstuhl Seminar Proceedings, Volume 5431, p. 1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{giesl_et_al:DagSemProc.05431.6,
  author =	{Giesl, J\"{u}rgen and Thiemann, Ren\'{e} and Schneider-Kamp, Peter},
  title =	{{Proving and Disproving Termination in the Dependency Pair Framework}},
  booktitle =	{Deduction and Applications},
  pages =	{1--1},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{5431},
  editor =	{Franz Baader and Peter Baumgartner and Robert Nieuwenhuis and Andrei Voronkov},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.05431.6},
  URN =		{urn:nbn:de:0030-drops-5091},
  doi =		{10.4230/DagSemProc.05431.6},
  annote =	{Keywords: Termination, non-termination, term rewriting, dependency pairs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail