Search Results

Documents authored by Umboh, Seeun


Found 2 Possible Name Variants:

Umboh, Seeun

Document
Network Design with Coverage Costs

Authors: Siddharth Barman, Shuchi Chawla, and Seeun Umboh

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
We study network design with a cost structure motivated by redundancy in data traffic. We are given a graph, g groups of terminals, and a universe of data packets. Each group of terminals desires a subset of the packets from its respective source. The cost of routing traffic on any edge in the network is proportional to the total size of the distinct packets that the edge carries. Our goal is to find a minimum cost routing. We focus on two settings. In the first, the collection of packet sets desired by source-sink pairs is laminar. For this setting, we present a primal-dual based 2-approximation, improving upon a logarithmic approximation due to Barman and Chawla (2012){BC12}. In the second setting, packet sets can have non-trivial intersection. We focus on the case where each packet is desired by either a single terminal group or by all of the groups. This setting does not admit an O(log^{{1}/{4} - gamma} g)-approximation for any constant gamma under a standard assumption; we present an O(log g)-approximation when the graph is unweighted. Our approximation for the second setting is based on a novel spanner-type construction in unweighted graphs that, given a collection of g vertex subsets, finds a subgraph of cost only a constant factor more than the minimum spanning tree of the graph, such that every subset in the collection has a Steiner tree in the subgraph of cost at most O(log g) that of its minimum Steiner tree in the original graph. We call such a subgraph a group spanner.

Cite as

Siddharth Barman, Shuchi Chawla, and Seeun Umboh. Network Design with Coverage Costs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 48-63, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{barman_et_al:LIPIcs.APPROX-RANDOM.2014.48,
  author =	{Barman, Siddharth and Chawla, Shuchi and Umboh, Seeun},
  title =	{{Network Design with Coverage Costs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{48--63},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.48},
  URN =		{urn:nbn:de:0030-drops-46876},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.48},
  annote =	{Keywords: Network Design, Spanner, Primal Dual Method, Traffic Redundancy}
}

Umboh, Seeun William

Document
APPROX
Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment

Authors: Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The online joint replenishment problem (JRP) is a fundamental problem in the area of online problems with delay. Over the last decade, several works have studied generalizations of JRP with different cost functions for servicing requests. Most prior works on JRP and its generalizations have focused on the clairvoyant setting. Recently, Touitou [Noam Touitou, 2023] developed a non-clairvoyant framework that provided an O(√{n log n}) upper bound for a wide class of generalized JRP, where n is the number of request types. We advance the study of non-clairvoyant algorithms by providing a simpler, modular framework that matches the competitive ratio established by Touitou for the same class of generalized JRP. Our key insight is to leverage universal algorithms for Set Cover to approximate arbitrary monotone subadditive functions using a simple class of functions termed disjoint. This allows us to reduce the problem to several independent instances of the TCP Acknowledgement problem, for which a simple 2-competitive non-clairvoyant algorithm is known. The modularity of our framework is a major advantage as it allows us to tailor the reduction to specific problems and obtain better competitive ratios. In particular, we obtain tight O(√n)-competitive algorithms for two significant problems: Multi-Level Aggregation and Weighted Symmetric Subadditive Joint Replenishment. We also show that, in contrast, Touitou’s algorithm is Ω(√{n log n})-competitive for both of these problems.

Cite as

Tomer Ezra, Stefano Leonardi, Michał Pawłowski, Matteo Russo, and Seeun William Umboh. Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.APPROX/RANDOM.2024.12,
  author =	{Ezra, Tomer and Leonardi, Stefano and Paw{\l}owski, Micha{\l} and Russo, Matteo and Umboh, Seeun William},
  title =	{{Universal Optimization for Non-Clairvoyant Subadditive Joint Replenishment}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  URN =		{urn:nbn:de:0030-drops-210050},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.12},
  annote =	{Keywords: Set Cover, Joint Replenishment, TCP-Acknowledgment, Subadditive Function Approximation, Multi-Level Aggregation}
}
Document
APPROX
Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound

Authors: Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the Max Unique Coverage problem, including applications to the data stream model. The input is a universe of n elements, a collection of m subsets of this universe, and a cardinality constraint, k. The goal is to select a subcollection of at most k sets that maximizes unique coverage, i.e, the number of elements contained in exactly one of the selected sets. The Max Unique Coverage problem has applications in wireless networks, radio broadcast, and envy-free pricing. Our first main result is a fixed-parameter tractable approximation scheme (FPT-AS) for Max Unique Coverage, parameterized by k and the maximum element frequency, r, which can be implemented on a data stream. Our FPT-AS finds a (1-ε)-approximation while maintaining a kernel of size Õ(k r/ε), which can be combined with subsampling to use Õ(k² r / ε³) space overall. This significantly improves on the previous-best FPT-AS with the same approximation, but a kernel of size Õ(k² r / ε²). In order to achieve our first result, we show upper bounds on the ratio of a collection’s coverage to the unique coverage of a maximizing subcollection; this is by constructing explicit algorithms that find a subcollection with unique coverage at least a logarithmic ratio of the collection’s coverage. We complement our algorithms with our second main result, showing that Ω(m / k²) space is necessary to achieve a (1.5 + o(1))/(ln k - 1)-approximation in the data stream. This dramatically improves the previous-best lower bound showing that Ω(m / k²) is necessary to achieve better than a e^{-1+1/k}-approximation.

Cite as

Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth. Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 25:1-25:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cervenjak_et_al:LIPIcs.APPROX/RANDOM.2024.25,
  author =	{Cervenjak, Philip and Gan, Junhao and Umboh, Seeun William and Wirth, Anthony},
  title =	{{Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{25:1--25:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  URN =		{urn:nbn:de:0030-drops-210183},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  annote =	{Keywords: Maximum unique coverage, maximum coverage, approximate kernel, data streams}
}
Document
APPROX
Online Matching with Set and Concave Delays

Authors: Lindsey Deryckere and Seeun William Umboh

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We initiate the study of online problems with set delay, where the delay cost at any given time is an arbitrary function of the set of pending requests. In particular, we study the online min-cost perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, m requests arrive over time in a metric space of n points. When a request arrives the algorithm must choose to either match or delay the request. The goal is to create a perfect matching of all requests while minimising the sum of distances between matched requests, and the total delay costs incurred by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant setting, where the algorithm does not know the future delay costs. We first show no algorithm is competitive in n or m. We then study the natural special case of size-based delay where the delay is a non-decreasing function of the number of unmatched requests. Our main result is the first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are competitive in terms of m. In fact, these are the first non-clairvoyant algorithms for any variant of MPMD. A key technical ingredient is an analog of the symmetric difference of matchings that may be useful for other special classes of set delay. Furthermore, we prove a lower bound of Ω(n) for any deterministic algorithm and Ω(log n) for any randomised algorithm. These lower bounds also hold for clairvoyant algorithms. Finally, we also give an m-competitive deterministic algorithm for uniform concave delays in the clairvoyant setting.

Cite as

Lindsey Deryckere and Seeun William Umboh. Online Matching with Set and Concave Delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{deryckere_et_al:LIPIcs.APPROX/RANDOM.2023.17,
  author =	{Deryckere, Lindsey and Umboh, Seeun William},
  title =	{{Online Matching with Set and Concave Delays}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.17},
  URN =		{urn:nbn:de:0030-drops-188423},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.17},
  annote =	{Keywords: online algorithms, matching, delay, non-clairvoyant}
}
Document
Nested Active-Time Scheduling

Authors: Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, and Seeun William Umboh

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
The active-time scheduling problem considers the problem of scheduling preemptible jobs with windows (release times and deadlines) on a parallel machine that can schedule up to g jobs during each timestep. The goal in the active-time problem is to minimize the number of active steps, i.e., timesteps in which at least one job is scheduled. In this way, the active time models parallel scheduling when there is a fixed cost for turning the machine on at each discrete step. This paper presents a 9/5-approximation algorithm for a special case of the active-time scheduling problem in which job windows are laminar (nested). This result improves on the previous best 2-approximation for the general case.

Cite as

Nairen Cao, Jeremy T. Fineman, Shi Li, Julián Mestre, Katina Russell, and Seeun William Umboh. Nested Active-Time Scheduling. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ISAAC.2022.36,
  author =	{Cao, Nairen and Fineman, Jeremy T. and Li, Shi and Mestre, Juli\'{a}n and Russell, Katina and Umboh, Seeun William},
  title =	{{Nested Active-Time Scheduling}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.36},
  URN =		{urn:nbn:de:0030-drops-173214},
  doi =		{10.4230/LIPIcs.ISAAC.2022.36},
  annote =	{Keywords: Scheduling algorithms, Active time, Approximation algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Online Weighted Cardinality Joint Replenishment Problem with Delay

Authors: Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We study a generalization of the classic Online Joint Replenishment Problem (JRP) with Delays that we call the Online Weighted Cardinality JRP with Delays. The JRP is an extensively studied inventory management problem wherein requests for different item types arrive at various points in time. A request is served by ordering its corresponding item type. The cost of serving a set of requests depends on the item types ordered. Furthermore, each request incurs a delay penalty while it is left unserved. The objective is to minimise the total service and delay costs. In the Weighted Cardinality JRP, each item type has a positive weight and the cost of ordering is a non-decreasing, concave function of the total weight of the item types ordered. This problem was first considered in the offline setting by Cheung et al. (2015) but nothing is known in the online setting. Our main result is a deterministic, constant competitive algorithm for this problem.

Cite as

Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online Weighted Cardinality Joint Replenishment Problem with Delay. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2022.40,
  author =	{Chen, Ryder and Khatkar, Jahanvi and Umboh, Seeun William},
  title =	{{Online Weighted Cardinality Joint Replenishment Problem with Delay}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.40},
  URN =		{urn:nbn:de:0030-drops-163815},
  doi =		{10.4230/LIPIcs.ICALP.2022.40},
  annote =	{Keywords: Online Algorithms, Delay, Joint Replenishment Problem}
}
Document
On the Extended TSP Problem

Authors: Julián Mestre, Sergey Pupyrev, and Seeun William Umboh

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We initiate the theoretical study of Ext-TSP, a problem that originates in the area of profile-guided binary optimization. Given a graph G = (V, E) with positive edge weights w: E → R^+, and a non-increasing discount function f(⋅) such that f(1) = 1 and f(i) = 0 for i > k, for some parameter k that is part of the problem definition. The problem is to sequence the vertices V so as to maximize ∑_{(u, v) ∈ E} f(|d_u - d_v|)⋅ w(u,v), where d_v ∈ {1, …, |V|} is the position of vertex v in the sequence. We show that Ext-TSP is APX-hard to approximate in general and we give a (k+1)-approximation algorithm for general graphs and a PTAS for some sparse graph classes such as planar or treewidth-bounded graphs. Interestingly, the problem remains challenging even on very simple graph classes; indeed, there is no exact n^o(k) time algorithm for trees unless the ETH fails. We complement this negative result with an exact n^O(k) time algorithm for trees.

Cite as

Julián Mestre, Sergey Pupyrev, and Seeun William Umboh. On the Extended TSP Problem. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 42:1-42:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mestre_et_al:LIPIcs.ISAAC.2021.42,
  author =	{Mestre, Juli\'{a}n and Pupyrev, Sergey and Umboh, Seeun William},
  title =	{{On the Extended TSP Problem}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{42:1--42:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.42},
  URN =		{urn:nbn:de:0030-drops-154751},
  doi =		{10.4230/LIPIcs.ISAAC.2021.42},
  annote =	{Keywords: profile-guided optimization, approximation algorithms, bandwidth, TSP}
}
Document
The Online Broadcast Range-Assignment Problem

Authors: Mark de Berg, Aleksandar Markovic, and Seeun William Umboh

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
Let P = {p₀,…,p_{n-1}} be a set of points in ℝ^d, modeling devices in a wireless network. A range assignment assigns a range r(p_i) to each point p_i ∈ P, thus inducing a directed communication graph 𝒢_r in which there is a directed edge (p_i,p_j) iff dist(p_i, p_j) ⩽ r(p_i), where dist(p_i,p_j) denotes the distance between p_i and p_j. The range-assignment problem is to assign the transmission ranges such that 𝒢_r has a certain desirable property, while minimizing the cost of the assignment; here the cost is given by ∑_{p_i ∈ P} r(p_i)^α, for some constant α > 1 called the distance-power gradient. We introduce the online version of the range-assignment problem, where the points p_j arrive one by one, and the range assignment has to be updated at each arrival. Following the standard in online algorithms, resources given out cannot be taken away - in our case this means that the transmission ranges will never decrease. The property we want to maintain is that 𝒢_r has a broadcast tree rooted at the first point p₀. Our results include the following. - We prove that already in ℝ¹, a 1-competitive algorithm does not exist. In particular, for distance-power gradient α = 2 any online algorithm has competitive ratio at least 1.57. - For points in ℝ¹ and ℝ², we analyze two natural strategies for updating the range assignment upon the arrival of a new point p_j. The strategies do not change the assignment if p_j is already within range of an existing point, otherwise they increase the range of a single point, as follows: Nearest-Neighbor (NN) increases the range of NN(p_j), the nearest neighbor of p_j, to dist(p_j, NN(p_j)), and Cheapest Increase (CI) increases the range of the point p_i for which the resulting cost increase to be able to reach the new point p_j is minimal. We give lower and upper bounds on the competitive ratio of these strategies as a function of the distance-power gradient α. We also analyze the following variant of NN in ℝ² for α = 2: 2-Nearest-Neighbor (2-NN) increases the range of NN(p_j) to 2⋅ dist(p_j,NN(p_j)), - We generalize the problem to points in arbitrary metric spaces, where we present an O(log n)-competitive algorithm.

Cite as

Mark de Berg, Aleksandar Markovic, and Seeun William Umboh. The Online Broadcast Range-Assignment Problem. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 60:1-60:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ISAAC.2020.60,
  author =	{de Berg, Mark and Markovic, Aleksandar and Umboh, Seeun William},
  title =	{{The Online Broadcast Range-Assignment Problem}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{60:1--60:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.60},
  URN =		{urn:nbn:de:0030-drops-134042},
  doi =		{10.4230/LIPIcs.ISAAC.2020.60},
  annote =	{Keywords: Computational geometry, online algorithms, range assignment, broadcast}
}
Document
Track A: Algorithms, Complexity and Games
Tight Bounds for Online Weighted Tree Augmentation

Authors: Joseph (Seffi) Naor, Seeun William Umboh, and David P. Williamson

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
The Weighted Tree Augmentation problem (WTAP) is a fundamental problem in network design. In this paper, we consider this problem in the online setting. We are given an n-vertex spanning tree T and an additional set L of edges (called links) with costs. Then, terminal pairs arrive one-by-one and our task is to maintain a low-cost subset of links F such that every terminal pair that has arrived so far is 2-edge-connected in T cup F. This online problem was first studied by Gupta, Krishnaswamy and Ravi (SICOMP 2012) who used it as a subroutine for the online survivable network design problem. They gave a deterministic O(log^2 n)-competitive algorithm and showed an Omega(log n) lower bound on the competitive ratio of randomized algorithms. The case when T is a path is also interesting: it is exactly the online interval set cover problem, which also captures as a special case the parking permit problem studied by Meyerson (FOCS 2005). The contribution of this paper is to give tight results for online weighted tree and path augmentation problems. The main result of this work is a deterministic O(log n)-competitive algorithm for online WTAP, which is tight up to constant factors.

Cite as

Joseph (Seffi) Naor, Seeun William Umboh, and David P. Williamson. Tight Bounds for Online Weighted Tree Augmentation. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 88:1-88:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{naor_et_al:LIPIcs.ICALP.2019.88,
  author =	{Naor, Joseph (Seffi) and Umboh, Seeun William and Williamson, David P.},
  title =	{{Tight Bounds for Online Weighted Tree Augmentation}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{88:1--88:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.88},
  URN =		{urn:nbn:de:0030-drops-106647},
  doi =		{10.4230/LIPIcs.ICALP.2019.88},
  annote =	{Keywords: Online algorithms, competitive analysis, tree augmentation, network design}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail