Search Results

Documents authored by Wang, Jiaheng


Document
Track A: Algorithms, Complexity and Games
Approximate Counting for Spin Systems in Sub-Quadratic Time

Authors: Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present two randomised approximate counting algorithms with Õ(n^{2-c}/ε²) running time for some constant c > 0 and accuracy ε: 1) for the hard-core model with fugacity λ on graphs with maximum degree Δ when λ = O(Δ^{-1.5-c₁}) where c₁ = c/(2-2c); 2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as ℤ². For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when correlation decays faster than the neighbourhood growth, namely when λ = o(Δ^{-2}). Our first algorithm does not require this property and extends the range where sub-quadratic algorithms exist. Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold, albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial growth, such as ℤ^d, but with a running time of the form Õ(n²ε^{-2}/2^{c(log n)^{1/d}}) where d is the exponent of the polynomial growth and c > 0 is some constant.

Cite as

Konrad Anand, Weiming Feng, Graham Freifeld, Heng Guo, and Jiaheng Wang. Approximate Counting for Spin Systems in Sub-Quadratic Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.11,
  author =	{Anand, Konrad and Feng, Weiming and Freifeld, Graham and Guo, Heng and Wang, Jiaheng},
  title =	{{Approximate Counting for Spin Systems in Sub-Quadratic Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.11},
  URN =		{urn:nbn:de:0030-drops-201543},
  doi =		{10.4230/LIPIcs.ICALP.2024.11},
  annote =	{Keywords: Randomised algorithm, Approximate counting, Spin system, Sub-quadratic algorithm}
}
Document
RANDOM
Improved Bounds for Randomly Colouring Simple Hypergraphs

Authors: Weiming Feng, Heng Guo, and Jiaheng Wang

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
We study the problem of sampling almost uniform proper q-colourings in k-uniform simple hypergraphs with maximum degree Δ. For any δ > 0, if k ≥ 20(1+δ)/δ and q ≥ 100Δ^({2+δ}/{k-4/δ-4}), the running time of our algorithm is Õ(poly(Δ k)⋅ n^1.01), where n is the number of vertices. Our result requires fewer colours than previous results for general hypergraphs (Jain, Pham, and Vuong, 2021; He, Sun, and Wu, 2021), and does not require Ω(log n) colours unlike the work of Frieze and Anastos (2017).

Cite as

Weiming Feng, Heng Guo, and Jiaheng Wang. Improved Bounds for Randomly Colouring Simple Hypergraphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 25:1-25:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feng_et_al:LIPIcs.APPROX/RANDOM.2022.25,
  author =	{Feng, Weiming and Guo, Heng and Wang, Jiaheng},
  title =	{{Improved Bounds for Randomly Colouring Simple Hypergraphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{25:1--25:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.25},
  URN =		{urn:nbn:de:0030-drops-171477},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.25},
  annote =	{Keywords: Approximate counting, Markov chain, Mixing time, Hypergraph colouring}
}
Document
Track A: Algorithms, Complexity and Games
On the Degree of Boolean Functions as Polynomials over ℤ_m

Authors: Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Polynomial representations of Boolean functions over various rings such as ℤ and ℤ_m have been studied since Minsky and Papert (1969). From then on, they have been employed in a large variety of areas including communication complexity, circuit complexity, learning theory, coding theory and so on. For any integer m ≥ 2, each Boolean function has a unique multilinear polynomial representation over ring ℤ_m. The degree of such polynomial is called modulo-m degree, denoted as deg_m(⋅). In this paper, we investigate the lower bound of modulo-m degree of Boolean functions. When m = p^k (k ≥ 1) for some prime p, we give a tight lower bound deg_m(f) ≥ k(p-1) for any non-degenerate function f:{0,1}ⁿ → {0,1}, provided that n is sufficient large. When m contains two different prime factors p and q, we give a nearly optimal lower bound for any symmetric function f:{0,1}ⁿ → {0,1} that deg_m(f) ≥ n/{2+1/(p-1)+1/(q-1)}.

Cite as

Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng. On the Degree of Boolean Functions as Polynomials over ℤ_m. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 100:1-100:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ICALP.2020.100,
  author =	{Sun, Xiaoming and Sun, Yuan and Wang, Jiaheng and Wu, Kewen and Xia, Zhiyu and Zheng, Yufan},
  title =	{{On the Degree of Boolean Functions as Polynomials over \mathbb{Z}\underlinem}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{100:1--100:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.100},
  URN =		{urn:nbn:de:0030-drops-125070},
  doi =		{10.4230/LIPIcs.ICALP.2020.100},
  annote =	{Keywords: Boolean function, polynomial, modular degree, Ramsey theory}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail