Search Results

Documents authored by van der Hoog, Ivor


Artifact
Software
A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Authors: Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen


Abstract

Cite as

Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, Tord Stordalen. A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{impl_index,
   title = {{A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees}}, 
   author = {G{\ae}de, Emil Toftegaard and van der Hoog, Ivor and Rotenberg, Eva and Stordalen, Tord},
   note = {Software, Carlsberg Fonden CF21-0302, Villum Fonden VIL37507, Marie Skłodowska-Curie 899987, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66;origin=https://github.com/Sgelet/DynamicLearnedIndex;visit=swh:1:snp:4cb5f98448fd35e1092239476b3dd4b7fa157fa9;anchor=swh:1:rev:e668899dab95046384f68723e53e0aacbad32feb}{\texttt{swh:1:dir:b8763eb0504d33beb81ee89d230a30dca8ab0b66}} (visited on 2025-10-01)},
   url = {https://github.com/Sgelet/DynamicLearnedIndex},
   doi = {10.4230/artifacts.24667},
}
Artifact
Software
Testbed for our learned index repository

Authors: Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen


Abstract

Cite as

Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, Tord Stordalen. Testbed for our learned index repository (Software, Test Bed). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{impl_bench,
   title = {{Testbed for our learned index repository}}, 
   author = {G{\ae}de, Emil Toftegaard and van der Hoog, Ivor and Rotenberg, Eva and Stordalen, Tord},
   note = {Software, Carlsberg Fonden CF21-0302, Villum Fonden VIL37507, Marie Skłodowska-Curie 899987, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6;origin=https://github.com/Sgelet/LearnedIndexBench;visit=swh:1:snp:b64d98b5a181116695f4f7960511292c6601df13;anchor=swh:1:rev:c3ad0ca2e0149fd2be070b37ba57b12a447bbf71}{\texttt{swh:1:dir:07ea25cfc176438933c1a5507bfdad3ba9461ab6}} (visited on 2025-10-01)},
   url = {https://github.com/Sgelet/LearnedIndexBench},
   doi = {10.4230/artifacts.24668},
}
Artifact
Software
Implementation of our dynamic algorithm for minimum orientation

Authors: Ernestine Grossmann, Henrik Reinstädtler, Eva Rotenberg, Christian Schulz, Ivor van der Hoog, and Juliette Vlieghe


Abstract

Cite as

Ernestine Grossmann, Henrik Reinstädtler, Eva Rotenberg, Christian Schulz, Ivor van der Hoog, Juliette Vlieghe. Implementation of our dynamic algorithm for minimum orientation (Software, Source Code). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-24670,
   title = {{Implementation of our dynamic algorithm for minimum orientation}}, 
   author = {Grossmann, Ernestine and Reinst\"{a}dtler, Henrik and Rotenberg, Eva and Schulz, Christian and van der Hoog, Ivor and Vlieghe, Juliette},
   note = {Software, Villum Fonden VIL37507, DFG SCHU 2567/8-1, Marie Skłodowska-Curie 899987, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:0ea52feafca9f6d8ce3ee893686fde2510513e9e;origin=https://github.com/DynGraphLab/DynDeltaApprox;visit=swh:1:snp:d75d11daa88538aaa86297daef487996502d243b;anchor=swh:1:rev:f8c3028a966664ce26b0f32c08de00dec2103127}{\texttt{swh:1:dir:0ea52feafca9f6d8ce3ee893686fde2510513e9e}} (visited on 2025-10-01)},
   url = {https://github.com/DynGraphLab/DynDeltaApprox},
   doi = {10.4230/artifacts.24670},
}
Document
Fréchet Distance in Unweighted Planar Graphs

Authors: Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The Fréchet distance is a distance measure between trajectories in ℝ^d or walks in a graph G. Given constant-time shortest path queries, the Discrete Fréchet distance D_G(P, Q) between two walks P and Q can be computed in O(|P|⋅|Q|) time using a dynamic program. Driemel, van der Hoog, and Rotenberg [SoCG'22] show that for weighted planar graphs this approach is likely tight, as there can be no strongly-subquadratic algorithm to compute a 1.01-approximation of D_G(P, Q) unless the Orthogonal Vector Hypothesis (OVH) fails. Such quadratic-time conditional lower bounds are common to many Fréchet distance variants. However, they can be circumvented by assuming that the input comes from some well-behaved class: There exist (1+ε)-approximations, both in weighted graphs and in ℝ^d, that take near-linear time for c-packed or κ-straight walks in the graph. In ℝ^d there also exists a near-linear time algorithm to compute the Fréchet distance whenever all input edges are long compared to the distance. We consider computing the Fréchet distance in unweighted planar graphs. We show that there exist no strongly-subquadratic 1.25-approximations of the discrete Fréchet distance between two disjoint simple paths in an unweighted planar graph in strongly subquadratic time, unless OVH fails. This improves the previous lower bound, both in terms of generality and approximation factor. We subsequently show that adding graph structure circumvents this lower bound: If the graph is a regular tiling with unit-weighted edges, then there exists an Õ((|P|+|Q|)^{1.5})-time algorithm to compute D_G(P, Q). Our result has natural implications in the plane, as it allows us to define a new class of well-behaved curves that facilitate (1+ε)-approximations of their discrete Fréchet distance in subquadratic time.

Cite as

Ivor van der Hoog, Thijs van der Horst, Eva Rotenberg, and Lasse Wulf. Fréchet Distance in Unweighted Planar Graphs. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.24,
  author =	{van der Hoog, Ivor and van der Horst, Thijs and Rotenberg, Eva and Wulf, Lasse},
  title =	{{Fr\'{e}chet Distance in Unweighted Planar Graphs}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.24},
  URN =		{urn:nbn:de:0030-drops-244924},
  doi =		{10.4230/LIPIcs.ESA.2025.24},
  annote =	{Keywords: Fr\'{e}chet distance, planar graphs, lower bounds, approximation algorithms}
}
Document
Instance-Optimal Imprecise Convex Hull

Authors: Sarita de Berg, Ivor van der Hoog, Eva Rotenberg, Daniel Rutschmann, and Sampson Wong

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Imprecise measurements of a point set P = (p₁, …, p_n) can be modelled by a family of regions F = (R₁, …, R_n), where each imprecise region R_i ∈ F contains a unique point p_i ∈ P. A retrieval models an accurate measurement by replacing an imprecise region R_i with its corresponding point p_i. We construct the convex hull of an imprecise point set in the plane, by determining the cyclic ordering of the convex hull vertices of P as efficiently as possible. Efficiency is interpreted in two ways: (i) minimising the number of retrievals, and (ii) the computation time to determine the set of regions that must be retrieved. Previous works focused on only one of these two aspects: either minimising retrievals or optimising algorithmic runtime. Our contribution is the first to simultaneously achieve both. Let r(F, P) denote the minimal number of retrievals required by any algorithm to determine the convex hull of P for a given instance (F, P). For a family F of n constant-complexity polygons, our main result is a reconstruction algorithm that performs Θ(r(F, P)) retrievals in O(r(F, P) log³ n) time. Compared to previous approaches that achieve optimal retrieval counts, we improve the runtime per retrieval from polynomial to polylogarithmic. We extend the generality of previous results to simple k-gons, to pairwise disjoint disks with radii in [1,k], and to unit disks where at most k disks overlap in a single point. Our runtime scales linearly with k.

Cite as

Sarita de Berg, Ivor van der Hoog, Eva Rotenberg, Daniel Rutschmann, and Sampson Wong. Instance-Optimal Imprecise Convex Hull. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{deberg_et_al:LIPIcs.ESA.2025.25,
  author =	{de Berg, Sarita and van der Hoog, Ivor and Rotenberg, Eva and Rutschmann, Daniel and Wong, Sampson},
  title =	{{Instance-Optimal Imprecise Convex Hull}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.25},
  URN =		{urn:nbn:de:0030-drops-244932},
  doi =		{10.4230/LIPIcs.ESA.2025.25},
  annote =	{Keywords: convex hull, imprecise geometry preprocessing model, partial information}
}
Document
A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees

Authors: Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Indexing data is a fundamental problem in computer science. The input is a set S of n distinct integers from a universe 𝒰. Indexing queries take a value q ∈ 𝒰 and return the membership, predecessor or rank of q in S. A range query takes two values q, r ∈ 𝒰 and returns the set S ∩ [q,r]. Recently, various papers study a special case where the the input data behaves in an approximately piece-wise linear way. Given the sorted (rank,value) pairs, and given some constant ε, one wants to maintain a small number of axis-disjoint line-segments such that, for each rank, the value is within ± ε of the corresponding line-segment. Ferragina and Vinciguerra (VLDB 2020) observe that this geometric problem is useful for solving indexing problems, particularly when the number of line-segments is small compared to the size of the dataset. We study the dynamic version of this geometric problem. In the dynamic setting, inserting or deleting just one data point may cause up to three line-segments to be merged, or one line-segment to be split at most three-way. To determine and compute this, we use techniques from dynamic maintenance of convex hulls, and provide new algorithms with worst-case guarantees, including an O(log n) algorithm to compute a separating line between two non-intersecting convex hulls - an operation previously missing from the literature. We then use our fully-dynamic geometry-based subroutine in an indexing data structure, combining it with a natural hashing technique. The resulting indexing data structure has theoretically efficient worst-case guarantees in expectation. We compare its practical performance to the solution of Ferragina and Vinciguerra, which was shown to perform better in certain structured settings [Sun, Zhou, Li VLDB 2023]. Our empirical analysis shows that our solution supports more efficient range queries in the special case where the update sequence contains many deletions.

Cite as

Emil Toftegaard Gæde, Ivor van der Hoog, Eva Rotenberg, and Tord Stordalen. A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 64:1-64:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gaede_et_al:LIPIcs.ESA.2025.64,
  author =	{G{\ae}de, Emil Toftegaard and van der Hoog, Ivor and Rotenberg, Eva and Stordalen, Tord},
  title =	{{A Dynamic Piecewise-Linear Geometric Index with Worst-Case Guarantees}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{64:1--64:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.64},
  URN =		{urn:nbn:de:0030-drops-245323},
  doi =		{10.4230/LIPIcs.ESA.2025.64},
  annote =	{Keywords: Algorithms Engineering, Data Structures, Indexing, Convex Hulls}
}
Document
From Theory to Practice: Engineering Approximation Algorithms for Dynamic Orientation

Authors: Ernestine Grossmann, Henrik Reinstädtler, Eva Rotenberg, Christian Schulz, Ivor van der Hoog, and Juliette Vlieghe

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Dynamic graph algorithms have seen significant theoretical advancements, but practical evaluations often lag behind. This work bridges the gap between theory and practice by engineering and empirically evaluating recently developed approximation algorithms for dynamically maintaining graph orientations. We comprehensively describe the underlying data structures, including efficient bucketing techniques and round-robin updates. Our implementation has a natural parameter λ, which allows for a trade-off between algorithmic efficiency and the quality of the solution. In the extensive experimental evaluation, we demonstrate that our implementation offers a considerable speedup. Using different quality metrics, we show that our implementations are very competitive and can outperform previous methods. Overall, our approach solves more instances than other methods while being up to 112 times faster on instances that are solvable by all methods compared.

Cite as

Ernestine Grossmann, Henrik Reinstädtler, Eva Rotenberg, Christian Schulz, Ivor van der Hoog, and Juliette Vlieghe. From Theory to Practice: Engineering Approximation Algorithms for Dynamic Orientation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 65:1-65:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{grossmann_et_al:LIPIcs.ESA.2025.65,
  author =	{Grossmann, Ernestine and Reinst\"{a}dtler, Henrik and Rotenberg, Eva and Schulz, Christian and van der Hoog, Ivor and Vlieghe, Juliette},
  title =	{{From Theory to Practice: Engineering Approximation Algorithms for Dynamic Orientation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{65:1--65:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.65},
  URN =		{urn:nbn:de:0030-drops-245331},
  doi =		{10.4230/LIPIcs.ESA.2025.65},
  annote =	{Keywords: Dynamic graphs, out-orientation}
}
Document
Simpler Universally Optimal Dijkstra

Authors: Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Let G be a weighted (directed) graph with n vertices and m edges. Given a source vertex s, Dijkstra’s algorithm computes the shortest path lengths from s to all other vertices in O(m + n log n) time. This bound is known to be worst-case optimal via a reduction to sorting. Theoretical computer science has developed numerous fine-grained frameworks for analyzing algorithmic performance beyond standard worst-case analysis, such as instance optimality and output sensitivity. Haeupler, Hladík, Rozhoň, Tarjan, and Tětek [FOCS '24] consider the notion of universal optimality, a refined complexity measure that accounts for both the graph topology and the edge weights. For a fixed graph topology, the universal running time of a weighted graph algorithm is defined as its worst-case running time over all possible edge weightings of G. An algorithm is universally optimal if no other algorithm achieves a better asymptotic universal running time on any particular graph topology. Haeupler, Hladík, Rozhoň, Tarjan, and Tětek show that Dijkstra’s algorithm can be made universally optimal by replacing the heap with a custom data structure. Their approach builds on Iacono’s [SWAT '00] working-set bound ϕ(x). This is a technical definition that, intuitively, for a heap element x, counts the maximum number of simultaneously-present elements y that were pushed onto the heap whilst x was in the heap. They design a new heap data structure that can pop an element x in O(1 + log ϕ(x)) time. They show that Dijkstra’s algorithm with their heap data structure is universally optimal. In this work, we revisit their result. We use a simpler heap property that we will call timestamp optimality, where the cost of popping an element x is logarithmic in the number of elements inserted between pushing and popping x. We show that timestamp optimal heaps are not only easier to define but also easier to implement. Using these time stamps, we provide a significantly simpler proof that Dijkstra’s algorithm, with the right kind of heap, is universally optimal.

Cite as

Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann. Simpler Universally Optimal Dijkstra. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 71:1-71:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.71,
  author =	{van der Hoog, Ivor and Rotenberg, Eva and Rutschmann, Daniel},
  title =	{{Simpler Universally Optimal Dijkstra}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{71:1--71:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.71},
  URN =		{urn:nbn:de:0030-drops-245390},
  doi =		{10.4230/LIPIcs.ESA.2025.71},
  annote =	{Keywords: Graph algorithms, instance optimality, Fibonnacci heaps, simplification}
}
Document
A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull

Authors: Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
For a planar point set P, its convex hull is the smallest convex polygon that encloses all points in P. The construction of the convex hull from an array I_P containing P is a fundamental problem in computational geometry. By sorting I_P in lexicographical order, one can construct the convex hull of P in O(n log n) time which is worst-case optimal. Standard worst-case analysis, however, has been criticized as overly coarse or pessimistic, and researchers search for more refined analyses. For an algorithm A, worst-case analysis fixes n, and considers the maximum running time of A across all size-n point sets P and permutations I_P of P. Output-sensitive analysis fixes n and k, and considers the maximum running time across all size-n points sets P with k hull points and permutations I_P of P. Universal analysis provides an even stronger guarantee. It fixes a point set P and considers the maximum running time across all permutations I_P of P. Kirkpatrick, McQueen, and Seidel [SICOMP'86] consider output-sensitive analysis. If the convex hull of P contains k points, then their algorithm runs in O(n log k) time. Afshani, Barbay, Chan [FOCS'07] prove that the algorithm by Kirkpatrick, McQueen, and Seidel is also universally optimal. Their proof restricts the model of computation to any algebraic decision tree model where the test functions have at most constant degree and at most a constant number of arguments. They rely upon involved algebraic arguments to construct a lower bound for each point set P that matches the universal running time of [SICOMP'86]. We provide a different proof of universal optimality. Instead of restricting the computational model, we further specify the output. We require as output (1) the convex hull, and (2) for each internal point of P a witness for it being internal. Our argument is shorter, perhaps simpler, and applicable in more general models of computation.

Cite as

Ivor van der Hoog, Eva Rotenberg, and Daniel Rutschmann. A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 102:1-102:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2025.102,
  author =	{van der Hoog, Ivor and Rotenberg, Eva and Rutschmann, Daniel},
  title =	{{A Combinatorial Proof of Universal Optimality for Computing a Planar Convex Hull}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{102:1--102:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.102},
  URN =		{urn:nbn:de:0030-drops-245715},
  doi =		{10.4230/LIPIcs.ESA.2025.102},
  annote =	{Keywords: Convex hull, Combinatorial proofs, Universal optimality}
}
Document
Track A: Algorithms, Complexity and Games
Faster, Deterministic and Space Efficient Subtrajectory Clustering

Authors: Ivor van der Hoog, Thijs van der Horst, and Tim Ophelders

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Given a trajectory T and a distance Δ, we wish to find a set C of curves of complexity at most 𝓁, such that we can cover T with subcurves that each are within Fréchet distance Δ to at least one curve in C. We call C an (𝓁,Δ)-clustering and aim to find an (𝓁,Δ)-clustering of minimum cardinality. This problem variant was introduced by Akitaya et al. (2021) and shown to be NP-complete. The main focus has therefore been on bicriteria approximation algorithms, allowing for the clustering to be an (𝓁, Θ(Δ))-clustering of roughly optimal size. We present algorithms that construct (𝓁,4Δ)-clusterings of 𝒪(k log n) size, where k is the size of the optimal (𝓁, Δ)-clustering. We use 𝒪(n³) space and 𝒪(k n³ log⁴ n) time. Our algorithms significantly improve upon the clustering quality (improving the approximation factor in Δ) and size (whenever 𝓁 ∈ Ω(log n / log k)). We offer deterministic running times improving known expected bounds by a factor near-linear in 𝓁. Additionally, we match the space usage of prior work, and improve it substantially, by a factor super-linear in n𝓁, when compared to deterministic results.

Cite as

Ivor van der Hoog, Thijs van der Horst, and Tim Ophelders. Faster, Deterministic and Space Efficient Subtrajectory Clustering. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 133:1-133:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ICALP.2025.133,
  author =	{van der Hoog, Ivor and van der Horst, Thijs and Ophelders, Tim},
  title =	{{Faster, Deterministic and Space Efficient Subtrajectory Clustering}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{133:1--133:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.133},
  URN =		{urn:nbn:de:0030-drops-235109},
  doi =		{10.4230/LIPIcs.ICALP.2025.133},
  annote =	{Keywords: Fr\'{e}chet distance, clustering, set cover}
}
Document
Efficient Greedy Discrete Subtrajectory Clustering

Authors: Ivor van der Hoog, Lara Ost, Eva Rotenberg, and Daniel Rutschmann

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We cluster a set of trajectories 𝒯 using subtrajectories of 𝒯. We require for a clustering C that any two subtrajectories (𝒯[a, b], 𝒯[c, d]) in a cluster have disjoint intervals [a,b] and [c, d]. Clustering quality may be measured by the number of clusters, the number of vertices of 𝒯 that are absent from the clustering, and by the Fréchet distance between subtrajectories in a cluster. A Δ-cluster of 𝒯 is a cluster 𝒫 of subtrajectories of 𝒯 with a centre P ∈ 𝒫, where all subtrajectories in 𝒫 have Fréchet distance at most Δ to P. Buchin, Buchin, Gudmundsson, Löffler and Luo present two O(n² + n m 𝓁)-time algorithms: SC(max, 𝓁, Δ, 𝒯) computes a single Δ-cluster where P has at least 𝓁 vertices and maximises the cardinality m of 𝒫. SC(m, max, Δ, 𝒯) computes a single Δ-cluster where 𝒫 has cardinality m and maximises the complexity 𝓁 of P. In this paper, which is a mixture of algorithms engineering and theoretical insights, we use such maximum-cardinality clusters in a greedy clustering algorithm. We first provide an efficient implementation of SC(max, 𝓁, Δ, 𝒯) and SC(m, max, Δ, 𝒯) that significantly outperforms previous implementations. Next, we use these functions as a subroutine in a greedy clustering algorithm, which performs well when compared to existing subtrajectory clustering algorithms on real-world data. Finally, we observe that, for fixed Δ and 𝒯, these two functions always output a point on the Pareto front of some bivariate function θ(𝓁, m). We design a new algorithm PSC(Δ, 𝒯) that in O(n² log⁴ n) time computes a 2-approximation of this Pareto front. This yields a broader set of candidate clusters, with comparable quality to the output of the previous functions. We show that using PSC(Δ, 𝒯) as a subroutine improves the clustering quality and performance even further.

Cite as

Ivor van der Hoog, Lara Ost, Eva Rotenberg, and Daniel Rutschmann. Efficient Greedy Discrete Subtrajectory Clustering. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.SoCG.2025.78,
  author =	{van der Hoog, Ivor and Ost, Lara and Rotenberg, Eva and Rutschmann, Daniel},
  title =	{{Efficient Greedy Discrete Subtrajectory Clustering}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.78},
  URN =		{urn:nbn:de:0030-drops-232308},
  doi =		{10.4230/LIPIcs.SoCG.2025.78},
  annote =	{Keywords: Algorithms engineering, Fr\'{e}chet distance, subtrajectory clustering}
}
Document
Local Density and Its Distributed Approximation

Authors: Aleksander Bjørn Christiansen, Ivor van der Hoog, and Eva Rotenberg

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
The densest subgraph problem is a classic problem in combinatorial optimisation. Graphs with low maximum subgraph density are often called "uniformly sparse", leading to algorithms parameterised by this density. However, in reality, the sparsity of a graph is not necessarily uniform. This calls for a formally well-defined, fine-grained notion of density. Danisch, Chan, and Sozio propose a definition for local density that assigns to each vertex v a value ρ^*(v). This local density is a generalisation of the maximum subgraph density of a graph. I.e., if ρ(G) is the subgraph density of a finite graph G, then ρ(G) equals the maximum local density ρ^*(v) over vertices v in G. They present a Frank-Wolfe-based algorithm to approximate the local density of each vertex with no theoretical (asymptotic) guarantees. We provide an extensive study of this local density measure. Just as with (global) maximum subgraph density, we show that there is a dual relation between the local out-degrees and the minimum out-degree orientations of the graph. We introduce the definition of the local out-degree g^*(v) of a vertex v, and show it to be equal to the local density ρ^*(v). We consider the local out-degree to be conceptually simpler, shorter to define, and easier to compute. Using the local out-degree we show a previously unknown fact: that existing algorithms already dynamically approximate the local density for each vertex with polylogarithmic update time. Next, we provide the first distributed algorithms that compute the local density with provable guarantees: given any ε such that ε^{-1} ∈ O(poly n), we show a deterministic distributed algorithm in the LOCAL model where, after O(ε^{-2} log² n) rounds, every vertex v outputs a (1 + ε)-approximation of their local density ρ^*(v). In CONGEST, we show a deterministic distributed algorithm that requires poly(log n,ε^{-1}) ⋅ 2^{O(√{log n})} rounds, which is sublinear in n. As a corollary, we obtain the first deterministic algorithm running in a sublinear number of rounds for (1+ε)-approximate densest subgraph detection in the CONGEST model.

Cite as

Aleksander Bjørn Christiansen, Ivor van der Hoog, and Eva Rotenberg. Local Density and Its Distributed Approximation. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 25:1-25:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{christiansen_et_al:LIPIcs.STACS.2025.25,
  author =	{Christiansen, Aleksander Bj{\o}rn and van der Hoog, Ivor and Rotenberg, Eva},
  title =	{{Local Density and Its Distributed Approximation}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.25},
  URN =		{urn:nbn:de:0030-drops-228502},
  doi =		{10.4230/LIPIcs.STACS.2025.25},
  annote =	{Keywords: Distributed graph algorithms, graph density computation, graph density approximation, network analysis theory}
}
Document
Data Structures for Approximate Fréchet Distance for Realistic Curves

Authors: Ivor van der Hoog, Eva Rotenberg, and Sampson Wong

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
The Fréchet distance is a popular distance measure between curves P and Q. Conditional lower bounds prohibit (1+ε)-approximate Fréchet distance computations in strongly subquadratic time, even when preprocessing P using any polynomial amount of time and space. As a consequence, the Fréchet distance has been studied under realistic input assumptions, for example, assuming both curves are c-packed. In this paper, we study c-packed curves in Euclidean space ℝ^d and in general geodesic metrics 𝒳. In ℝ^d, we provide a nearly-linear time static algorithm for computing the (1+ε)-approximate continuous Fréchet distance between c-packed curves. Our algorithm has a linear dependence on the dimension d, as opposed to previous algorithms which have an exponential dependence on d. In general geodesic metric spaces X, little was previously known. We provide the first data structure, and thereby the first algorithm, under this model. Given a c-packed input curve P with n vertices, we preprocess it in O(n log n) time, so that given a query containing a constant ε and a curve Q with m vertices, we can return a (1+ε)-approximation of the discrete Fréchet distance between P and Q in time polylogarithmic in n and linear in m, 1/ε, and the realism parameter c. Finally, we show several extensions to our data structure; to support dynamic extend/truncate updates on P, to answer map matching queries, and to answer Hausdorff distance queries.

Cite as

Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data Structures for Approximate Fréchet Distance for Realistic Curves. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 56:1-56:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ISAAC.2024.56,
  author =	{van der Hoog, Ivor and Rotenberg, Eva and Wong, Sampson},
  title =	{{Data Structures for Approximate Fr\'{e}chet Distance for Realistic Curves}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{56:1--56:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.56},
  URN =		{urn:nbn:de:0030-drops-221846},
  doi =		{10.4230/LIPIcs.ISAAC.2024.56},
  annote =	{Keywords: Fr\'{e}chet distance, data structures, approximation algorithms}
}
Document
Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs

Authors: Ivor van der Hoog, Irene Parada, and Eva Rotenberg

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A directed graph G is upward planar if it admits a planar embedding where each edge is y-monotone. Unlike planarity testing, upward planarity testing is NP-hard except in restricted cases, such as when the graph has the single-source property (i.e., each connected component has one source). In this paper, we present a dynamic data structure for maintaining an upward combinatorial embedding ℰ→(G) of a single-source upward planar graph subject to edge deletions, edge contractions, directed edge insertions across a face, and single-source-preserving vertex splits through specified corners (i.e., the gaps between pairs of consecutive edges that share a vertex and a face). We furthermore support changes to the embedding ℰ→(G) in the form of subgraph flips that mirror or slide the placement of a subgraph that is connected to the rest of the graph via at most two vertices. Updates that are incompatible with the current upward planar embedding are identified and rejected. All update operations are supported as long as the graph remains upward planar. In addition, we support queries that can tell whether two vertices can be connected with a directed edge while the graph remains single-source (we call these uplinkability queries). If a pair of vertices are not uplinkable, we facilitate one-flip-linkable queries: These point to a flip that makes them uplinkable, if any such flip exists. We dynamically maintain a linear-size data structure on G which supports incidence queries between a vertex and a face, and uplinkability queries for vertex pairs. We support all updates and queries in O(log² n) worst-case time.

Cite as

Ivor van der Hoog, Irene Parada, and Eva Rotenberg. Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 70:1-70:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.ESA.2024.70,
  author =	{van der Hoog, Ivor and Parada, Irene and Rotenberg, Eva},
  title =	{{Dynamic Embeddings of Dynamic Single-Source Upward Planar Graphs}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{70:1--70:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.70},
  URN =		{urn:nbn:de:0030-drops-211410},
  doi =		{10.4230/LIPIcs.ESA.2024.70},
  annote =	{Keywords: dynamic graphs, data structures, computational geometry, graph drawing, graph algorithms, upward planarity}
}
Document
Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs

Authors: Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
A classical problem in computational geometry and graph algorithms is: given a dynamic set 𝒮 of geometric shapes in the plane, efficiently maintain the connectivity of the intersection graph of 𝒮. Previous papers studied the setting where, before the updates, the data structure receives some parameter P. Then, updates could insert and delete disks as long as at all times the disks have a diameter that lies in a fixed range [1/P, 1]. As a consequence of that prerequisite, the aspect ratio ψ (i.e. the ratio between the largest and smallest diameter) of the disks would at all times satisfy ψ ≤ P. The state-of-the-art for storing disks in a dynamic connectivity data structure is a data structure that uses O(Pn) space and that has amortized O(P log⁴ n) expected amortized update time. Connectivity queries between disks are supported in O(log n / log log n) time. In the dynamic setting, one wishes for a more flexible data structure in which disks of any diameter may arrive and leave, independent of their diameter, changing the aspect ratio freely. Ideally, the aspect ratio should merely be part of the analysis. We restrict our attention to axis-aligned squares, and study fully-dynamic square intersection graph connectivity. Our result is fully-adaptive to the aspect ratio, spending time proportional to the current aspect ratio ψ, as opposed to some previously given maximum P. Our focus on squares allows us to simplify and streamline the connectivity pipeline from previous work. When n is the number of squares and ψ is the aspect ratio after insertion (or before deletion), our data structure answers connectivity queries in O(log n / log log n) time. We can update connectivity information in O(ψ log⁴ n + log⁶ n) amortized time. We also improve space usage from O(P ⋅ n log n) to O(n log³ n log ψ) - while generalizing to a fully-adaptive aspect ratio - which yields a space usage that is near-linear in n for any polynomially bounded ψ.

Cite as

Ivor van der Hoog, André Nusser, Eva Rotenberg, and Frank Staals. Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 63:1-63:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.MFCS.2024.63,
  author =	{van der Hoog, Ivor and Nusser, Andr\'{e} and Rotenberg, Eva and Staals, Frank},
  title =	{{Fully-Adaptive Dynamic Connectivity of Square Intersection Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{63:1--63:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.63},
  URN =		{urn:nbn:de:0030-drops-206197},
  doi =		{10.4230/LIPIcs.MFCS.2024.63},
  annote =	{Keywords: Computational geometry, planar geometry, data structures, geometric intersection graphs, fully-dynamic algorithms}
}
Document
Snake in Optimal Space and Time

Authors: Philip Bille, Martín Farach-Colton, Inge Li Gørtz, and Ivor van der Hoog

Published in: LIPIcs, Volume 291, 12th International Conference on Fun with Algorithms (FUN 2024)


Abstract
We revisit the classic game of Snake and ask the basic data structural question: how many bits does it take to represent the state of a snake game so that it can be updated in constant time? Our main result is a data structure that uses optimal space (within constant factors). To achieve our results, we introduce several interesting data structural techniques, including a decomposition technique for the problem, a tabulation scheme for encoding small subproblems, and a dynamic memory allocation scheme.

Cite as

Philip Bille, Martín Farach-Colton, Inge Li Gørtz, and Ivor van der Hoog. Snake in Optimal Space and Time. In 12th International Conference on Fun with Algorithms (FUN 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 291, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.FUN.2024.3,
  author =	{Bille, Philip and Farach-Colton, Mart{\'\i}n and G{\o}rtz, Inge Li and van der Hoog, Ivor},
  title =	{{Snake in Optimal Space and Time}},
  booktitle =	{12th International Conference on Fun with Algorithms (FUN 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-314-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{291},
  editor =	{Broder, Andrei Z. and Tamir, Tami},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.3},
  URN =		{urn:nbn:de:0030-drops-199118},
  doi =		{10.4230/LIPIcs.FUN.2024.3},
  annote =	{Keywords: Data structure, Snake, Nokia, String Algorithms}
}
Document
Worst-Case Deterministic Fully-Dynamic Biconnectivity in Changeable Planar Embeddings

Authors: Jacob Holm, Ivor van der Hoog, and Eva Rotenberg

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
We study dynamic planar graphs with n vertices, subject to edge deletion, edge contraction, edge insertion across a face, and the splitting of a vertex in specified corners. We dynamically maintain a combinatorial embedding of such a planar graph, subject to connectivity and 2-vertex-connectivity (biconnectivity) queries between pairs of vertices. Whenever a query pair is connected and not biconnected, we find the first and last cutvertex separating them. Additionally, we allow local changes to the embedding by flipping the embedding of a subgraph that is connected by at most two vertices to the rest of the graph. We support all queries and updates in deterministic, worst-case, O(log² n) time, using an O(n)-sized data structure.

Cite as

Jacob Holm, Ivor van der Hoog, and Eva Rotenberg. Worst-Case Deterministic Fully-Dynamic Biconnectivity in Changeable Planar Embeddings. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{holm_et_al:LIPIcs.SoCG.2023.40,
  author =	{Holm, Jacob and van der Hoog, Ivor and Rotenberg, Eva},
  title =	{{Worst-Case Deterministic Fully-Dynamic Biconnectivity in Changeable Planar Embeddings}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.40},
  URN =		{urn:nbn:de:0030-drops-178909},
  doi =		{10.4230/LIPIcs.SoCG.2023.40},
  annote =	{Keywords: dynamic graphs, planarity, connectivity}
}
Document
Segment Visibility Counting Queries in Polygons

Authors: Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Let P be a simple polygon with n vertices, and let A be a set of m points or line segments inside P. We develop data structures that can efficiently count the objects from A that are visible to a query point or a query segment. Our main aim is to obtain fast, O(polylog nm), query times, while using as little space as possible. In case the query is a single point, a simple visibility-polygon-based solution achieves O(log nm) query time using O(nm²) space. In case A also contains only points, we present a smaller, O(n + m^{2+ε} log n)-space, data structure based on a hierarchical decomposition of the polygon. Building on these results, we tackle the case where the query is a line segment and A contains only points. The main complication here is that the segment may intersect multiple regions of the polygon decomposition, and that a point may see multiple such pieces. Despite these issues, we show how to achieve O(log n log nm) query time using only O(nm^{2+ε} + n²) space. Finally, we show that we can even handle the case where the objects in A are segments with the same bounds.

Cite as

Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals. Segment Visibility Counting Queries in Polygons. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 58:1-58:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ISAAC.2022.58,
  author =	{Buchin, Kevin and Custers, Bram and van der Hoog, Ivor and L\"{o}ffler, Maarten and Popov, Aleksandr and Roeloffzen, Marcel and Staals, Frank},
  title =	{{Segment Visibility Counting Queries in Polygons}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{58:1--58:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.58},
  URN =		{urn:nbn:de:0030-drops-173431},
  doi =		{10.4230/LIPIcs.ISAAC.2022.58},
  annote =	{Keywords: Visibility, Data Structure, Polygons, Complexity}
}
Document
Efficient Fréchet Distance Queries for Segments

Authors: Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and Frank Staals

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We study the problem of constructing a data structure that can store a two-dimensional polygonal curve P, such that for any query segment ab one can efficiently compute the Fréchet distance between P and ab. First we present a data structure of size O(n log n) that can compute the Fréchet distance between P and a horizontal query segment ab in O(log n) time, where n is the number of vertices of P. In comparison to prior work, this significantly reduces the required space. We extend the type of queries allowed, as we allow a query to be a horizontal segment ab together with two points s, t ∈ P (not necessarily vertices), and ask for the Fréchet distance between ab and the curve of P in between s and t. Using O(nlog²n) storage, such queries take O(log³ n) time, simplifying and significantly improving previous results. We then generalize our results to query segments of arbitrary orientation. We present an O(nk^{3+ε}+n²) size data structure, where k ∈ [1,n] is a parameter the user can choose, and ε > 0 is an arbitrarily small constant, such that given any segment ab and two points s, t ∈ P we can compute the Fréchet distance between ab and the curve of P in between s and t in O((n/k)log²n+log⁴ n) time. This is the first result that allows efficient exact Fréchet distance queries for arbitrarily oriented segments. We also present two applications of our data structure. First, we show that our data structure allows us to compute a local δ-simplification (with respect to the Fréchet distance) of a polygonal curve in O(n^{5/2+ε}) time, improving a previous O(n³) time algorithm. Second, we show that we can efficiently find a translation of an arbitrary query segment ab that minimizes the Fréchet distance with respect to a subcurve of P.

Cite as

Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and Frank Staals. Efficient Fréchet Distance Queries for Segments. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 29:1-29:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ESA.2022.29,
  author =	{Buchin, Maike and van der Hoog, Ivor and Ophelders, Tim and Schlipf, Lena and Silveira, Rodrigo I. and Staals, Frank},
  title =	{{Efficient Fr\'{e}chet Distance Queries for Segments}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{29:1--29:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.29},
  URN =		{urn:nbn:de:0030-drops-169671},
  doi =		{10.4230/LIPIcs.ESA.2022.29},
  annote =	{Keywords: Computational Geometry, Data Structures, Fr\'{e}chet distance}
}
Document
On the Discrete Fréchet Distance in a Graph

Authors: Anne Driemel, Ivor van der Hoog, and Eva Rotenberg

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
The Fréchet distance is a well-studied similarity measure between curves that is widely used throughout computer science. Motivated by applications where curves stem from paths and walks on an underlying graph (such as a road network), we define and study the Fréchet distance for paths and walks on graphs. When provided with a distance oracle of G with O(1) query time, the classical quadratic-time dynamic program can compute the Fréchet distance between two walks P and Q in a graph G in O(|P|⋅|Q|) time. We show that there are situations where the graph structure helps with computing Fréchet distance: when the graph G is planar, we apply existing (approximate) distance oracles to compute a (1+ε)-approximation of the Fréchet distance between any shortest path P and any walk Q in O(|G|log|G|/√ε+|P|+|Q|/ε) time. We generalise this result to near-shortest paths, i.e. κ-straight paths, as we show how to compute a (1+ε)-approximation between a κ-straight path P and any walk Q in O(|G|log|G|/√ε+|P|+(κ|Q|)/ε) time. Our algorithmic results hold for both the strong and the weak discrete Fréchet distance over the shortest path metric in G. Finally, we show that additional assumptions on the input, such as our assumption on path straightness, are indeed necessary to obtain truly subquadratic running time. We provide a conditional lower bound showing that the Fréchet distance, or even its 1.01-approximation, between arbitrary paths in a weighted planar graph cannot be computed in O((|P|⋅|Q|)^{1-δ}) time for any δ > 0 unless the Orthogonal Vector Hypothesis fails. For walks, this lower bound holds even when G is planar, unit-weight and has O(1) vertices.

Cite as

Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the Discrete Fréchet Distance in a Graph. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 36:1-36:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{driemel_et_al:LIPIcs.SoCG.2022.36,
  author =	{Driemel, Anne and van der Hoog, Ivor and Rotenberg, Eva},
  title =	{{On the Discrete Fr\'{e}chet Distance in a Graph}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{36:1--36:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.36},
  URN =		{urn:nbn:de:0030-drops-160448},
  doi =		{10.4230/LIPIcs.SoCG.2022.36},
  annote =	{Keywords: Fr\'{e}chet, graphs, planar, complexity analysis}
}
Document
Trajectory Visibility

Authors: Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
We study the problem of testing whether there exists a time at which two entities moving along different piece-wise linear trajectories among polygonal obstacles are mutually visible. We study several variants, depending on whether or not the obstacles form a simple polygon, trajectories may intersect the polygon edges, and both or only one of the entities are moving. For constant complexity trajectories contained in a simple polygon with n vertices, we provide an 𝒪(n) time algorithm to test if there is a time at which the entities can see each other. If the polygon contains holes, we present an 𝒪(n log n) algorithm. We show that this is tight. We then consider storing the obstacles in a data structure, such that queries consisting of two line segments can be efficiently answered. We show that for all variants it is possible to answer queries in sublinear time using polynomial space and preprocessing time. As a critical intermediate step, we provide an efficient solution to a problem of independent interest: preprocess a convex polygon such that we can efficiently test intersection with a quadratic curve segment. If the obstacles form a simple polygon, this allows us to answer visibility queries in 𝒪(n³/4log³ n) time using 𝒪(nlog⁵ n) space. For more general obstacles the query time is 𝒪(log^k n), for a constant but large value k, using 𝒪(n^{3k}) space. We provide more efficient solutions when one of the entities remains stationary.

Cite as

Patrick Eades, Ivor van der Hoog, Maarten Löffler, and Frank Staals. Trajectory Visibility. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 23:1-23:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{eades_et_al:LIPIcs.SWAT.2020.23,
  author =	{Eades, Patrick and van der Hoog, Ivor and L\"{o}ffler, Maarten and Staals, Frank},
  title =	{{Trajectory Visibility}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{23:1--23:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.23},
  URN =		{urn:nbn:de:0030-drops-122701},
  doi =		{10.4230/LIPIcs.SWAT.2020.23},
  annote =	{Keywords: trajectories, visibility, data structures, semi-algebraic range searching}
}
Document
Preprocessing Ambiguous Imprecise Points

Authors: Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
Let R = {R_1, R_2, ..., R_n} be a set of regions and let X = {x_1, x_2, ..., x_n} be an (unknown) point set with x_i in R_i. Region R_i represents the uncertainty region of x_i. We consider the following question: how fast can we establish order if we are allowed to preprocess the regions in R? The preprocessing model of uncertainty uses two consecutive phases: a preprocessing phase which has access only to R followed by a reconstruction phase during which a desired structure on X is computed. Recent results in this model parametrize the reconstruction time by the ply of R, which is the maximum overlap between the regions in R. We introduce the ambiguity A(R) as a more fine-grained measure of the degree of overlap in R. We show how to preprocess a set of d-dimensional disks in O(n log n) time such that we can sort X (if d=1) and reconstruct a quadtree on X (if d >= 1 but constant) in O(A(R)) time. If A(R) is sub-linear, then reporting the result dominates the running time of the reconstruction phase. However, we can still return a suitable data structure representing the result in O(A(R)) time. In one dimension, {R} is a set of intervals and the ambiguity is linked to interval entropy, which in turn relates to the well-studied problem of sorting under partial information. The number of comparisons necessary to find the linear order underlying a poset P is lower-bounded by the graph entropy of P. We show that if P is an interval order, then the ambiguity provides a constant-factor approximation of the graph entropy. This gives a lower bound of Omega(A(R)) in all dimensions for the reconstruction phase (sorting or any proximity structure), independent of any preprocessing; hence our result is tight. Finally, our results imply that one can approximate the entropy of interval graphs in O(n log n) time, improving the O(n^{2.5}) bound by Cardinal et al.

Cite as

Ivor van der Hoog, Irina Kostitsyna, Maarten Löffler, and Bettina Speckmann. Preprocessing Ambiguous Imprecise Points. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 42:1-42:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.SoCG.2019.42,
  author =	{van der Hoog, Ivor and Kostitsyna, Irina and L\"{o}ffler, Maarten and Speckmann, Bettina},
  title =	{{Preprocessing Ambiguous Imprecise Points}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{42:1--42:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.42},
  URN =		{urn:nbn:de:0030-drops-104460},
  doi =		{10.4230/LIPIcs.SoCG.2019.42},
  annote =	{Keywords: preprocessing, imprecise points, entropy, sorting, proximity structures}
}
Document
Dynamic Smooth Compressed Quadtrees

Authors: Ivor van der Hoog, Elena Khramtcova, and Maarten Löffler

Published in: LIPIcs, Volume 99, 34th International Symposium on Computational Geometry (SoCG 2018)


Abstract
We introduce dynamic smooth (a.k.a. balanced) compressed quadtrees with worst-case constant time updates in constant dimensions. We distinguish two versions of the problem. First, we show that quadtrees as a space-division data structure can be made smooth and dynamic subject to split and merge operations on the quadtree cells. Second, we show that quadtrees used to store a set of points in R^d can be made smooth and dynamic subject to insertions and deletions of points. The second version uses the first but must additionally deal with compression and alignment of quadtree components. In both cases our updates take 2^{O(d log d)} time, except for the point location part in the second version which has a lower bound of Omega(log n); but if a pointer (finger) to the correct quadtree cell is given, the rest of the updates take worst-case constant time. Our result implies that several classic and recent results (ranging from ray tracing to planar point location) in computational geometry which use quadtrees can deal with arbitrary point sets on a real RAM pointer machine.

Cite as

Ivor van der Hoog, Elena Khramtcova, and Maarten Löffler. Dynamic Smooth Compressed Quadtrees. In 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 99, pp. 45:1-45:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{vanderhoog_et_al:LIPIcs.SoCG.2018.45,
  author =	{van der Hoog, Ivor and Khramtcova, Elena and L\"{o}ffler, Maarten},
  title =	{{Dynamic Smooth Compressed Quadtrees}},
  booktitle =	{34th International Symposium on Computational Geometry (SoCG 2018)},
  pages =	{45:1--45:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-066-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{99},
  editor =	{Speckmann, Bettina and T\'{o}th, Csaba D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2018.45},
  URN =		{urn:nbn:de:0030-drops-87581},
  doi =		{10.4230/LIPIcs.SoCG.2018.45},
  annote =	{Keywords: smooth, dynamic, data structure, quadtree, compression, alignment, Real RAM}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail