90 Search Results for "Aronov, Boris"


Volume

LIPIcs, Volume 77

33rd International Symposium on Computational Geometry (SoCG 2017)

SoCG 2017, July 4-7, 2017, Brisbane, Australia

Editors: Boris Aronov and Matthew J. Katz

Document
Eight-Partitioning Points in 3D, and Efficiently Too

Authors: Boris Aronov, Abdul Basit, Indu Ramesh, Gianluca Tasinato, and Uli Wagner

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
An eight-partition of a finite set of points (respectively, of a continuous mass distribution) in ℝ³ consists of three planes that divide the space into 8 octants, such that each open octant contains at most 1/8 of the points (respectively, of the mass). In 1966, Hadwiger showed that any mass distribution in ℝ³ admits an eight-partition; moreover, one can prescribe the normal direction of one of the three planes. The analogous result for finite point sets follows by a standard limit argument. We prove the following variant of this result: Any mass distribution (or point set) in ℝ³ admits an eight-partition for which the intersection of two of the planes is a line with a prescribed direction. Moreover, we present an efficient algorithm for calculating an eight-partition of a set of n points in ℝ³ (with prescribed normal direction of one of the planes) in time O^*(n^{5/2}).

Cite as

Boris Aronov, Abdul Basit, Indu Ramesh, Gianluca Tasinato, and Uli Wagner. Eight-Partitioning Points in 3D, and Efficiently Too. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 8:1-8:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2024.8,
  author =	{Aronov, Boris and Basit, Abdul and Ramesh, Indu and Tasinato, Gianluca and Wagner, Uli},
  title =	{{Eight-Partitioning Points in 3D, and Efficiently Too}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{8:1--8:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.8},
  URN =		{urn:nbn:de:0030-drops-199538},
  doi =		{10.4230/LIPIcs.SoCG.2024.8},
  annote =	{Keywords: Mass partitions, partitions of points in three dimensions, Borsuk-Ulam Theorem, Ham-Sandwich Theorem}
}
Document
A Clique-Based Separator for Intersection Graphs of Geodesic Disks in ℝ²

Authors: Boris Aronov, Mark de Berg, and Leonidas Theocharous

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let d be a (well-behaved) shortest-path metric defined on a path-connected subset of ℝ² and let 𝒟 = {D_1,…,D_n} be a set of geodesic disks with respect to the metric d. We prove that 𝒢^×(𝒟), the intersection graph of the disks in 𝒟, has a clique-based separator consisting of O(n^{3/4+ε}) cliques. This significantly extends the class of objects whose intersection graphs have small clique-based separators. Our clique-based separator yields an algorithm for q-Coloring that runs in time 2^O(n^{3/4+ε}), assuming the boundaries of the disks D_i can be computed in polynomial time. We also use our clique-based separator to obtain a simple, efficient, and almost exact distance oracle for intersection graphs of geodesic disks. Our distance oracle uses O(n^{7/4+ε}) storage and can report the hop distance between any two nodes in 𝒢^×(𝒟) in O(n^{3/4+ε}) time, up to an additive error of one. So far, distance oracles with an additive error of one that use subquadratic storage and sublinear query time were not known for such general graph classes.

Cite as

Boris Aronov, Mark de Berg, and Leonidas Theocharous. A Clique-Based Separator for Intersection Graphs of Geodesic Disks in ℝ². In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2024.9,
  author =	{Aronov, Boris and de Berg, Mark and Theocharous, Leonidas},
  title =	{{A Clique-Based Separator for Intersection Graphs of Geodesic Disks in \mathbb{R}²}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.9},
  URN =		{urn:nbn:de:0030-drops-199540},
  doi =		{10.4230/LIPIcs.SoCG.2024.9},
  annote =	{Keywords: Computational geometry, intersection graphs, separator theorems}
}
Document
Discrete Fréchet Distance Oracles

Authors: Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, P, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to P in sublinear time. Since there is evidence that this is impossible for query curves of length Θ(n^α), for any α > 0, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair u,v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the segment and any (u,v)-path in G. The answer is exact, if t = 1, and approximate if t > 1.

Cite as

Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh. Discrete Fréchet Distance Oracles. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2024.10,
  author =	{Aronov, Boris and Farhana, Tsuri and Katz, Matthew J. and Ramesh, Indu},
  title =	{{Discrete Fr\'{e}chet Distance Oracles}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.10},
  URN =		{urn:nbn:de:0030-drops-199554},
  doi =		{10.4230/LIPIcs.SoCG.2024.10},
  annote =	{Keywords: discrete Fr\'{e}chet distance, distance oracle, heavy-path decomposition, t-local graphs}
}
Document
APPROX
Facility Location in the Sublinear Geometric Model

Authors: Morteza Monemizadeh

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
In the sublinear geometric model, we are provided with an oracle access to a point set P of n points in a bounded discrete space [Δ]², where Δ = n^O(1) is a polynomially bounded number in n. That is, we do not have direct access to the points, but we can make certain types of queries and there is an oracle that responds to our queries. The type of queries that we assume we can make in this paper, are range counting queries where ranges are axis-aligned rectangles (that are basic primitives in database [Srikanta Tirthapura and David P. Woodruff, 2012; Bentley, 1975; Mark de Berg et al., 2008], computational geometry [Pankaj K. Agarwal, 2004; Pankaj K. Agarwal et al., 1996; Boris Aronov et al., 2010; Boris Aronov et al., 2009], and machine learning [Menachem Sadigurschi and Uri Stemmer, 2021; Long and Tan, 1998; Michael J. Kearns and Umesh V. Vazirani, 1995; Michael J. Kearns and Umesh V. Vazirani, 1994]). The oracle then answers these queries by returning the number of points that are in queried ranges. Let {Alg} be an algorithm that (exactly or approximately) solves a problem 𝒫 in the sublinear geometric model. The query complexity of Alg is measured in terms of the number of queries that Alg makes to solve 𝒫. In this paper, we study the complexity of the (uniform) Euclidean facility location problem in the sublinear geometric model. We develop a randomized sublinear algorithm that with high probability, (1+ε)-approximates the cost of the Euclidean facility location problem of the point set P in the sublinear geometric model using Õ(√n) range counting queries. We complement this result by showing that approximating the cost of the Euclidean facility location problem within o(log(n))-factor in the sublinear geometric model using the sampling strategy that we propose for our sublinear algorithm needs Ω̃(n^{1/4}) RangeCount queries. We leave it as an open problem whether such a polynomial lower bound on the number of RangeCount queries exists for any randomized sublinear algorithm that approximates the cost of the facility location problem within a constant factor.

Cite as

Morteza Monemizadeh. Facility Location in the Sublinear Geometric Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 6:1-6:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{monemizadeh:LIPIcs.APPROX/RANDOM.2023.6,
  author =	{Monemizadeh, Morteza},
  title =	{{Facility Location in the Sublinear Geometric Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{6:1--6:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  URN =		{urn:nbn:de:0030-drops-188315},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.6},
  annote =	{Keywords: Facility Location, Sublinear Geometric Model, Range Counting Queries}
}
Document
The Geodesic Edge Center of a Simple Polygon

Authors: Anna Lubiw and Anurag Murty Naredla

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
The geodesic edge center of a polygon is a point c inside the polygon that minimizes the maximum geodesic distance from c to any edge of the polygon, where geodesic distance is the shortest path distance inside the polygon. We give a linear-time algorithm to find a geodesic edge center of a simple polygon. This improves on the previous O(n log n) time algorithm by Lubiw and Naredla [European Symposium on Algorithms, 2021]. The algorithm builds on an algorithm to find the geodesic vertex center of a simple polygon due to Pollack, Sharir, and Rote [Discrete & Computational Geometry, 1989] and an improvement to linear time by Ahn, Barba, Bose, De Carufel, Korman, and Oh [Discrete & Computational Geometry, 2016]. The geodesic edge center can easily be found from the geodesic farthest-edge Voronoi diagram of the polygon. Finding that Voronoi diagram in linear time is an open question, although the geodesic nearest edge Voronoi diagram (the medial axis) can be found in linear time. As a first step of our geodesic edge center algorithm, we give a linear-time algorithm to find the geodesic farthest-edge Voronoi diagram restricted to the polygon boundary.

Cite as

Anna Lubiw and Anurag Murty Naredla. The Geodesic Edge Center of a Simple Polygon. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{lubiw_et_al:LIPIcs.SoCG.2023.49,
  author =	{Lubiw, Anna and Naredla, Anurag Murty},
  title =	{{The Geodesic Edge Center of a Simple Polygon}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.49},
  URN =		{urn:nbn:de:0030-drops-178994},
  doi =		{10.4230/LIPIcs.SoCG.2023.49},
  annote =	{Keywords: geodesic center of polygon, farthest edges, farthest-segment Voronoi diagram}
}
Document
Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors

Authors: Boris Aronov and Matthew J. Katz

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and construction time. The approach works not only for the Euclidean norm, but for other norms in ℝ^d, for any fixed d. We employ our ANN data structure to construct a faster dynamic structure for approximate SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of non-uniform power transmitters, thus closing a gap in previous state of the art. To obtain the latter result, we needed a data structure for dynamic approximate halfplane range counting in the plane. Since we could not find such a data structure in the literature, we also show how to dynamize one of the known static data structures.

Cite as

Boris Aronov and Matthew J. Katz. Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SWAT.2022.11,
  author =	{Aronov, Boris and Katz, Matthew J.},
  title =	{{Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{11:1--11:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.11},
  URN =		{urn:nbn:de:0030-drops-161710},
  doi =		{10.4230/LIPIcs.SWAT.2022.11},
  annote =	{Keywords: Nearest neighbors, Approximate nearest neighbors, Weighted nearest neighbors, Nearest neighbor queries, SINR queries, Dynamic data structures}
}
Document
Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems

Authors: Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Let 𝒯 be a set of n planar semi-algebraic regions in ℝ³ of constant complexity (e.g., triangles, disks), which we call plates. We wish to preprocess 𝒯 into a data structure so that for a query object γ, which is also a plate, we can quickly answer various intersection queries, such as detecting whether γ intersects any plate of 𝒯, reporting all the plates intersected by γ, or counting them. We focus on two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree algebraic arcs in ℝ³ (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in ℝ³. These interesting special cases form the building blocks for the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we obtain a variety of results with different storage and query-time bounds, depending on the complexity of the input and query objects. For example, if 𝒯 is a set of plates and the query objects are arcs, we obtain a data structure that uses O^*(n^{4/3}) storage (where the O^*(⋅) notation hides subpolynomial factors) and answers an intersection query in O^*(n^{2/3}) time. Alternatively, by increasing the storage to O^*(n^{3/2}), the query time can be decreased to O^*(n^{ρ}), where ρ = (2t-3)/3(t-1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the query arcs.

Cite as

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2022.4,
  author =	{Agarwal, Pankaj K. and Aronov, Boris and Ezra, Esther and Katz, Matthew J. and Sharir, Micha},
  title =	{{Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.4},
  URN =		{urn:nbn:de:0030-drops-160126},
  doi =		{10.4230/LIPIcs.SoCG.2022.4},
  annote =	{Keywords: Intersection searching, Semi-algebraic range searching, Point-enclosure queries, Ray-shooting queries, Polynomial partitions, Cylindrical algebraic decomposition, Multi-level partition trees, Collision detection}
}
Document
Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model

Authors: Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard geometric problems, all of which can be reduced to the following question: Given two sets A, B, each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the plane, we want to count, for each triangle Δ ∈ C, the number of intersection points between the segments of A and those of B that lie in Δ. The problems considered in this paper have been studied by Chan (2020), who gave algorithms that solve them, in the standard real-RAM model, in O((n²/log²n) log^O(1) log n) time. We present solutions in the algebraic decision-tree model whose cost is O(n^{60/31+ε}), for any ε > 0. Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl (2020). A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the order type of the lines, a "handicap" that turns out to be beneficial for speeding up our algorithm.

Cite as

Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir. Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.ISAAC.2021.3,
  author =	{Aronov, Boris and de Berg, Mark and Cardinal, Jean and Ezra, Esther and Iacono, John and Sharir, Micha},
  title =	{{Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.3},
  URN =		{urn:nbn:de:0030-drops-154363},
  doi =		{10.4230/LIPIcs.ISAAC.2021.3},
  annote =	{Keywords: Computational geometry, Algebraic decision-tree model, Polynomial partitioning, Primal-dual range searching, Order types, Point location, Hierarchical partitions}
}
Document
Throwing a Sofa Through the Window

Authors: Dan Halperin, Micha Sharir, and Itay Yehuda

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We study several variants of the problem of moving a convex polytope K, with n edges, in three dimensions through a flat rectangular (and sometimes more general) window. Specifically: ii) We study variants where the motion is restricted to translations only, discuss situations where such a motion can be reduced to sliding (translation in a fixed direction), and present efficient algorithms for those variants, which run in time close to O(n^{8/3}). iii) We consider the case of a gate (an unbounded window with two parallel infinite edges), and show that K can pass through such a window, by any collision-free rigid motion, iff it can slide through it, an observation that leads to an efficient algorithm for this variant too. iv) We consider arbitrary compact convex windows, and show that if K can pass through such a window W (by any motion) then K can slide through a slab of width equal to the diameter of W. v) We show that if a purely translational motion for K through a rectangular window W exists, then K can also slide through W keeping the same orientation as in the translational motion. For a given fixed orientation of K we can determine in linear time whether K can translate (and hence slide) through W keeping the given orientation, and if so plan the motion, also in linear time. vi) We give an example of a polytope that cannot pass through a certain window by translations only, but can do so when rotations are allowed. vii) We study the case of a circular window W, and show that, for the regular tetrahedron K of edge length 1, there are two thresholds 1 > δ₁≈ 0.901388 > δ₂≈ 0.895611, such that (a) K can slide through W if the diameter d of W is ≥ 1, (b) K cannot slide through W but can pass through it by a purely translational motion when δ₁ ≤ d < 1, (c) K cannot pass through W by a purely translational motion but can do it when rotations are allowed when δ₂ ≤ d < δ₁, and (d) K cannot pass through W at all when d < δ₂. viii) Finally, we explore the general setup, where we want to plan a general motion (with all six degrees of freedom) for K through a rectangular window W, and present an efficient algorithm for this problem, with running time close to O(n⁴).

Cite as

Dan Halperin, Micha Sharir, and Itay Yehuda. Throwing a Sofa Through the Window. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{halperin_et_al:LIPIcs.SoCG.2021.41,
  author =	{Halperin, Dan and Sharir, Micha and Yehuda, Itay},
  title =	{{Throwing a Sofa Through the Window}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.41},
  URN =		{urn:nbn:de:0030-drops-138409},
  doi =		{10.4230/LIPIcs.SoCG.2021.41},
  annote =	{Keywords: Motion planning, Convex polytopes in 3D}
}
Document
Geometric Pattern Matching Reduces to k-SUM

Authors: Boris Aronov and Jean Cardinal

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We prove that some exact geometric pattern matching problems reduce in linear time to o k-SUM when the pattern has a fixed size k. This holds in the real RAM model for searching for a similar copy of a set of k ≥ 3 points within a set of n points in the plane, and for searching for an affine image of a set of k ≥ d+2 points within a set of n points in d-space. As corollaries, we obtain improved real RAM algorithms and decision trees for the two problems. In particular, they can be solved by algebraic decision trees of near-linear height.

Cite as

Boris Aronov and Jean Cardinal. Geometric Pattern Matching Reduces to k-SUM. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 32:1-32:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.ISAAC.2020.32,
  author =	{Aronov, Boris and Cardinal, Jean},
  title =	{{Geometric Pattern Matching Reduces to k-SUM}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{32:1--32:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.32},
  URN =		{urn:nbn:de:0030-drops-133760},
  doi =		{10.4230/LIPIcs.ISAAC.2020.32},
  annote =	{Keywords: Geometric pattern matching, k-SUM problem, Linear decision trees}
}
Document
Dynamic Time Warping-Based Proximity Problems

Authors: Boris Aronov, Matthew J. Katz, and Elad Sulami

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Dynamic Time Warping (DTW) is a well-known similarity measure for curves, i.e., sequences of points, and especially for time series. We study several proximity problems for curves, where dynamic time warping is the underlying similarity measure. More precisely, we focus on the variants of these problems, in which, whenever we refer to the dynamic time warping distance between two curves, one of them is a line segment (i.e., a sequence of length two). These variants already reveal some of the difficulties that occur when dealing with the more general ones. Specifically, we study the following three problems: (i) distance oracle: given a curve C in ℝ^d, preprocess it to accommodate distance computations between query segments and C, (ii) segment center: given a set 𝒞 of curves in ℝ^d, find a segment s that minimizes the maximum distance between s and a curve in 𝒞, and (iii) segment nearest neighbor: given 𝒞, construct a data structure for segment nearest neighbor queries, i.e., return the curve in 𝒞 which is closest to a query segment s. We present solutions to these problems in any constant dimension d ≥ 1, using L_∞ for inter-point distances. We also consider the approximation version of the first problem, using L₁ for inter-point distances. That is, given a length-m curve C in ℝ^d, we construct a data structure of size O(m log m) that allows one to compute a 2-approximation of the distance between a query segment s and C in O(log³ m) time. Finally, we describe an interesting experimental study that we performed, which is related to the first problem above.

Cite as

Boris Aronov, Matthew J. Katz, and Elad Sulami. Dynamic Time Warping-Based Proximity Problems. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.MFCS.2020.9,
  author =	{Aronov, Boris and Katz, Matthew J. and Sulami, Elad},
  title =	{{Dynamic Time Warping-Based Proximity Problems}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{9:1--9:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.9},
  URN =		{urn:nbn:de:0030-drops-126794},
  doi =		{10.4230/LIPIcs.MFCS.2020.9},
  annote =	{Keywords: dynamic time warping, distance oracle, clustering, nearest-neighbor search}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic

Authors: Arnold Filtser, Omrit Filtser, and Matthew J. Katz

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In the (1+ε,r)-approximate near-neighbor problem for curves (ANNC) under some similarity measure δ, the goal is to construct a data structure for a given set 𝒞 of curves that supports approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ 𝒞 such that δ(Q,C)≤ r, then return a curve C' ∈ 𝒞 with δ(Q,C') ≤ (1+ε)r. There exists an efficient reduction from the (1+ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve C ∈ 𝒞 with δ(Q,C) ≤ (1+ε)⋅δ(Q,C^*), where C^* is the curve of 𝒞 most similar to Q. Given a set 𝒞 of n curves, each consisting of m points in d dimensions, we construct a data structure for ANNC that uses n⋅ O(1/ε)^{md} storage space and has O(md) query time (for a query curve of length m), where the similarity measure between two curves is their discrete Fréchet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is k ≪ m, and obtain essentially the same storage and query bounds as above, except that m is replaced by k. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.

Cite as

Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 48:1-48:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{filtser_et_al:LIPIcs.ICALP.2020.48,
  author =	{Filtser, Arnold and Filtser, Omrit and Katz, Matthew J.},
  title =	{{Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{48:1--48:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.48},
  URN =		{urn:nbn:de:0030-drops-124555},
  doi =		{10.4230/LIPIcs.ICALP.2020.48},
  annote =	{Keywords: polygonal curves, Fr\'{e}chet distance, dynamic time warping, approximation algorithms, (asymmetric) approximate nearest neighbor, range counting}
}
Document
On β-Plurality Points in Spatial Voting Games

Authors: Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
Let V be a set of n points in ℝ^d, called voters. A point p ∈ ℝ^d is a plurality point for V when the following holds: for every q ∈ ℝ^d the number of voters closer to p than to q is at least the number of voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce the concept of β-plurality points, which are defined similarly to regular plurality points except that the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0<β⩽1. We investigate the existence and computation of β-plurality points, and obtain the following results. - Define β^*_d := sup{β : any finite multiset V in ℝ^d admits a β-plurality point}. We prove that β^*₂ = √3/2, and that 1/√d ⩽ β^*_d ⩽ √3/2 for all d⩾3. - Define β(V) := sup {β : V admits a β-plurality point}. We present an algorithm that, given a voter set V in {ℝ}^d, computes an (1-ε)⋅ β(V) plurality point in time O(n²/ε^(3d-2) ⋅ log(n/ε^(d-1)) ⋅ log²(1/ε)).

Cite as

Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On β-Plurality Points in Spatial Voting Games. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2020.7,
  author =	{Aronov, Boris and de Berg, Mark and Gudmundsson, Joachim and Horton, Michael},
  title =	{{On \beta-Plurality Points in Spatial Voting Games}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.7},
  URN =		{urn:nbn:de:0030-drops-121651},
  doi =		{10.4230/LIPIcs.SoCG.2020.7},
  annote =	{Keywords: Computational geometry, Spatial voting theory, Plurality point, Computational social choice}
}
Document
Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets

Authors: Boris Aronov, Esther Ezra, and Micha Sharir

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We present subquadratic algorithms, in the algebraic decision-tree model of computation, for detecting whether there exists a triple of points, belonging to three respective sets A, B, and C of points in the plane, that satisfy a certain polynomial equation or two equations. The best known instance of such a problem is testing for the existence of a collinear triple of points in A×B×C, a classical 3SUM-hard problem that has so far defied any attempt to obtain a subquadratic solution, whether in the (uniform) real RAM model, or in the algebraic decision-tree model. While we are still unable to solve this problem, in full generality, in subquadratic time, we obtain such a solution, in the algebraic decision-tree model, that uses only roughly O(n^(28/15)) constant-degree polynomial sign tests, for the special case where two of the sets lie on one-dimensional curves and the third is placed arbitrarily in the plane. Our technique is fairly general, and applies to any other problem where we seek a triple that satisfies a single polynomial equation, e.g., determining whether A× B× C contains a triple spanning a unit-area triangle. This result extends recent work by Barba et al. [Luis Barba et al., 2019] and by Chan [Timothy M. Chan, 2020], where all three sets A, B, and C are assumed to be one-dimensional. While there are common features in the high-level approaches, here and in [Luis Barba et al., 2019], the actual analysis in this work becomes more involved and requires new methods and techniques, involving polynomial partitions and other related tools. As a second application of our technique, we again have three n-point sets A, B, and C in the plane, and we want to determine whether there exists a triple (a,b,c) ∈ A×B×C that simultaneously satisfies two real polynomial equations. For example, this is the setup when testing for the existence of pairs of similar triangles spanned by the input points, in various contexts discussed later in the paper. We show that problems of this kind can be solved with roughly O(n^(24/13)) constant-degree polynomial sign tests. These problems can be extended to higher dimensions in various ways, and we present subquadratic solutions to some of these extensions, in the algebraic decision-tree model.

Cite as

Boris Aronov, Esther Ezra, and Micha Sharir. Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.SoCG.2020.8,
  author =	{Aronov, Boris and Ezra, Esther and Sharir, Micha},
  title =	{{Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.8},
  URN =		{urn:nbn:de:0030-drops-121666},
  doi =		{10.4230/LIPIcs.SoCG.2020.8},
  annote =	{Keywords: Algebraic decision tree, Polynomial partition, Collinearity testing, 3SUM-hard problems, Polynomials vanishing on Cartesian products}
}
  • Refine by Author
  • 17 Aronov, Boris
  • 9 Katz, Matthew J.
  • 6 Sharir, Micha
  • 5 Ezra, Esther
  • 5 de Berg, Mark
  • Show More...

  • Refine by Classification
  • 14 Theory of computation → Computational geometry
  • 6 Theory of computation → Design and analysis of algorithms
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Networks → Network algorithms
  • Show More...

  • Refine by Keyword
  • 5 computational geometry
  • 4 Computational geometry
  • 4 approximation algorithms
  • 4 range searching
  • 3 art gallery problem
  • Show More...

  • Refine by Type
  • 89 document
  • 1 volume

  • Refine by Publication Year
  • 70 2017
  • 6 2020
  • 3 2024
  • 2 2016
  • 2 2019
  • Show More...