Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)
Stefano Berardi, Gabriele Buriola, and Peter Schuster. A General Constructive Form of Higman’s Lemma. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 16:1-16:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{berardi_et_al:LIPIcs.CSL.2024.16, author = {Berardi, Stefano and Buriola, Gabriele and Schuster, Peter}, title = {{A General Constructive Form of Higman’s Lemma}}, booktitle = {32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)}, pages = {16:1--16:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-310-2}, ISSN = {1868-8969}, year = {2024}, volume = {288}, editor = {Murano, Aniello and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.16}, URN = {urn:nbn:de:0030-drops-196599}, doi = {10.4230/LIPIcs.CSL.2024.16}, annote = {Keywords: intuitionistic logic, constructive mathematics, formal proof, inductive predicate, bar induction, well quasi-order, Higman’s lemma} }
Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)
Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Escardó. Type Theory with Explicit Universe Polymorphism. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{bezem_et_al:LIPIcs.TYPES.2022.13, author = {Bezem, Marc and Coquand, Thierry and Dybjer, Peter and Escard\'{o}, Mart{\'\i}n}, title = {{Type Theory with Explicit Universe Polymorphism}}, booktitle = {28th International Conference on Types for Proofs and Programs (TYPES 2022)}, pages = {13:1--13:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-285-3}, ISSN = {1868-8969}, year = {2023}, volume = {269}, editor = {Kesner, Delia and P\'{e}drot, Pierre-Marie}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.13}, URN = {urn:nbn:de:0030-drops-184564}, doi = {10.4230/LIPIcs.TYPES.2022.13}, annote = {Keywords: type theory, universes in type theory, universe polymorphism, level-indexed products, constraint-indexed products} }
Published in: LIPIcs, Volume 269, 28th International Conference on Types for Proofs and Programs (TYPES 2022)
Max Zeuner and Anders Mörtberg. A Univalent Formalization of Constructive Affine Schemes. In 28th International Conference on Types for Proofs and Programs (TYPES 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 269, pp. 14:1-14:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{zeuner_et_al:LIPIcs.TYPES.2022.14, author = {Zeuner, Max and M\"{o}rtberg, Anders}, title = {{A Univalent Formalization of Constructive Affine Schemes}}, booktitle = {28th International Conference on Types for Proofs and Programs (TYPES 2022)}, pages = {14:1--14:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-285-3}, ISSN = {1868-8969}, year = {2023}, volume = {269}, editor = {Kesner, Delia and P\'{e}drot, Pierre-Marie}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2022.14}, URN = {urn:nbn:de:0030-drops-184574}, doi = {10.4230/LIPIcs.TYPES.2022.14}, annote = {Keywords: Affine Schemes, Homotopy Type Theory and Univalent Foundations, Cubical Agda, Constructive Mathematics} }
Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)
Taichi Uemura. Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{uemura:LIPIcs.FSCD.2023.5, author = {Uemura, Taichi}, title = {{Homotopy Type Theory as Internal Languages of Diagrams of ∞-Logoses}}, booktitle = {8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)}, pages = {5:1--5:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-277-8}, ISSN = {1868-8969}, year = {2023}, volume = {260}, editor = {Gaboardi, Marco and van Raamsdonk, Femke}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.5}, URN = {urn:nbn:de:0030-drops-179897}, doi = {10.4230/LIPIcs.FSCD.2023.5}, annote = {Keywords: Homotopy type theory, ∞-logos, ∞-topos, oplax limit, Artin gluing, modality, synthetic Tait computability, logical relation} }
Published in: Dagstuhl Reports, Volume 11, Issue 10 (2022)
Thierry Coquand, Hajime Ishihara, Sara Negri, and Peter M. Schuster. Geometric Logic, Constructivisation, and Automated Theorem Proving (Dagstuhl Seminar 21472). In Dagstuhl Reports, Volume 11, Issue 10, pp. 151-172, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@Article{coquand_et_al:DagRep.11.10.151, author = {Coquand, Thierry and Ishihara, Hajime and Negri, Sara and Schuster, Peter M.}, title = {{Geometric Logic, Constructivisation, and Automated Theorem Proving (Dagstuhl Seminar 21472)}}, pages = {151--172}, journal = {Dagstuhl Reports}, ISSN = {2192-5283}, year = {2022}, volume = {11}, number = {10}, editor = {Coquand, Thierry and Ishihara, Hajime and Negri, Sara and Schuster, Peter M.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.11.10.151}, URN = {urn:nbn:de:0030-drops-159321}, doi = {10.4230/DagRep.11.10.151}, annote = {Keywords: automated theorem proving, categorical semantics, constructivisation, geometric logic, proof theory} }
Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)
Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.14, author = {Cavallo, Evan and M\"{o}rtberg, Anders and Swan, Andrew W}, title = {{Unifying Cubical Models of Univalent Type Theory}}, booktitle = {28th EACSL Annual Conference on Computer Science Logic (CSL 2020)}, pages = {14:1--14:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-132-0}, ISSN = {1868-8969}, year = {2020}, volume = {152}, editor = {Fern\'{a}ndez, Maribel and Muscholl, Anca}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.14}, URN = {urn:nbn:de:0030-drops-116578}, doi = {10.4230/LIPIcs.CSL.2020.14}, annote = {Keywords: Cubical Set Models, Cubical Type Theory, Homotopy Type Theory, Univalent Foundations} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Thierry Coquand, Simon Huber, and Christian Sattler. Homotopy Canonicity for Cubical Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{coquand_et_al:LIPIcs.FSCD.2019.11, author = {Coquand, Thierry and Huber, Simon and Sattler, Christian}, title = {{Homotopy Canonicity for Cubical Type Theory}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {11:1--11:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.11}, URN = {urn:nbn:de:0030-drops-105188}, doi = {10.4230/LIPIcs.FSCD.2019.11}, annote = {Keywords: cubical type theory, univalence, canonicity, sconing, Artin glueing} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for Type Theory. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{kaposi_et_al:LIPIcs.FSCD.2019.25, author = {Kaposi, Ambrus and Huber, Simon and Sattler, Christian}, title = {{Gluing for Type Theory}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {25:1--25:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.25}, URN = {urn:nbn:de:0030-drops-105323}, doi = {10.4230/LIPIcs.FSCD.2019.25}, annote = {Keywords: Martin-L\"{o}f type theory, logical relations, parametricity, canonicity, quotient inductive types} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31, author = {Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel}, title = {{Cubical Syntax for Reflection-Free Extensional Equality}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {31:1--31:25}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31}, URN = {urn:nbn:de:0030-drops-105387}, doi = {10.4230/LIPIcs.FSCD.2019.31}, annote = {Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity} }
Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)
Robin Adams, Marc Bezem, and Thierry Coquand. A Normalizing Computation Rule for Propositional Extensionality in Higher-Order Minimal Logic. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{adams_et_al:LIPIcs.TYPES.2016.3, author = {Adams, Robin and Bezem, Marc and Coquand, Thierry}, title = {{A Normalizing Computation Rule for Propositional Extensionality in Higher-Order Minimal Logic}}, booktitle = {22nd International Conference on Types for Proofs and Programs (TYPES 2016)}, pages = {3:1--3:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-065-1}, ISSN = {1868-8969}, year = {2018}, volume = {97}, editor = {Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.3}, URN = {urn:nbn:de:0030-drops-98581}, doi = {10.4230/LIPIcs.TYPES.2016.3}, annote = {Keywords: type theory, univalence, canonicity} }
Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)
Marc Bezem, Thierry Coquand, Keiko Nakata, and Erik Parmann. Realizability at Work: Separating Two Constructive Notions of Finiteness. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{bezem_et_al:LIPIcs.TYPES.2016.6, author = {Bezem, Marc and Coquand, Thierry and Nakata, Keiko and Parmann, Erik}, title = {{Realizability at Work: Separating Two Constructive Notions of Finiteness}}, booktitle = {22nd International Conference on Types for Proofs and Programs (TYPES 2016)}, pages = {6:1--6:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-065-1}, ISSN = {1868-8969}, year = {2018}, volume = {97}, editor = {Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.6}, URN = {urn:nbn:de:0030-drops-98541}, doi = {10.4230/LIPIcs.TYPES.2016.6}, annote = {Keywords: Type theory, realizability, constructive notions of finiteness} }
Published in: LIPIcs, Volume 69, 21st International Conference on Types for Proofs and Programs (TYPES 2015) (2018)
Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom. In 21st International Conference on Types for Proofs and Programs (TYPES 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 69, pp. 5:1-5:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)
@InProceedings{cohen_et_al:LIPIcs.TYPES.2015.5, author = {Cohen, Cyril and Coquand, Thierry and Huber, Simon and M\"{o}rtberg, Anders}, title = {{Cubical Type Theory: A Constructive Interpretation of the Univalence Axiom}}, booktitle = {21st International Conference on Types for Proofs and Programs (TYPES 2015)}, pages = {5:1--5:34}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-030-9}, ISSN = {1868-8969}, year = {2018}, volume = {69}, editor = {Uustalu, Tarmo}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2015.5}, URN = {urn:nbn:de:0030-drops-84754}, doi = {10.4230/LIPIcs.TYPES.2015.5}, annote = {Keywords: univalence axiom, dependent type theory, cubical sets} }
Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)
Thierry Coquand and Anuj Dawar. The Ackermann Award 2016. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 1:1-1:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{coquand_et_al:LIPIcs.CSL.2016.1, author = {Coquand, Thierry and Dawar, Anuj}, title = {{The Ackermann Award 2016}}, booktitle = {25th EACSL Annual Conference on Computer Science Logic (CSL 2016)}, pages = {1:1--1:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-022-4}, ISSN = {1868-8969}, year = {2016}, volume = {62}, editor = {Talbot, Jean-Marc and Regnier, Laurent}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.1}, URN = {urn:nbn:de:0030-drops-65419}, doi = {10.4230/LIPIcs.CSL.2016.1}, annote = {Keywords: Ackermann Award, Computer Science, Logic} }
Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)
Thierry Coquand and Bassel Mannaa. The Independence of Markov’s Principle in Type Theory. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{coquand_et_al:LIPIcs.FSCD.2016.17, author = {Coquand, Thierry and Mannaa, Bassel}, title = {{The Independence of Markov’s Principle in Type Theory}}, booktitle = {1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)}, pages = {17:1--17:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-010-1}, ISSN = {1868-8969}, year = {2016}, volume = {52}, editor = {Kesner, Delia and Pientka, Brigitte}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.17}, URN = {urn:nbn:de:0030-drops-59939}, doi = {10.4230/LIPIcs.FSCD.2016.17}, annote = {Keywords: Forcing, Dependent type theory, Markov's Principle, Cantor Space} }
Published in: LIPIcs, Volume 38, 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)
Marc Bezem, Thierry Coquand, and Erik Parmann. Non-Constructivity in Kan Simplicial Sets. In 13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 38, pp. 92-106, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)
@InProceedings{bezem_et_al:LIPIcs.TLCA.2015.92, author = {Bezem, Marc and Coquand, Thierry and Parmann, Erik}, title = {{Non-Constructivity in Kan Simplicial Sets}}, booktitle = {13th International Conference on Typed Lambda Calculi and Applications (TLCA 2015)}, pages = {92--106}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-87-3}, ISSN = {1868-8969}, year = {2015}, volume = {38}, editor = {Altenkirch, Thorsten}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TLCA.2015.92}, URN = {urn:nbn:de:0030-drops-51579}, doi = {10.4230/LIPIcs.TLCA.2015.92}, annote = {Keywords: Constructive logic, simplicial sets, semantics of simple types} }
Feedback for Dagstuhl Publishing