30 Search Results for "Fijalkow, Nathanael"


Document
The Power of Counting Steps in Quantitative Games

Authors: Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study deterministic games of infinite duration played on graphs and focus on the strategy complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies over finite graphs, but require infinite-memory strategies in general over infinite graphs. We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely branching arenas, three variants of limsup mean-payoff and total-payoff objectives admit winning strategies that are based either on a step counter or on a step counter and an additional bit of memory. Conversely, we show that for certain liminf total-payoff objectives, strategies resorting to a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case of all classical quantitative objectives up to the second level of the Borel hierarchy.

Cite as

Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove. The Power of Counting Steps in Quantitative Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2024.13,
  author =	{Bose, Sougata and Ibsen-Jensen, Rasmus and Purser, David and Totzke, Patrick and Vandenhove, Pierre},
  title =	{{The Power of Counting Steps in Quantitative Games}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.13},
  URN =		{urn:nbn:de:0030-drops-207852},
  doi =		{10.4230/LIPIcs.CONCUR.2024.13},
  annote =	{Keywords: Games on graphs, Markov strategies, quantitative objectives, infinite-state systems}
}
Document
As Soon as Possible but Rationally

Authors: Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper addresses complexity problems in rational verification and synthesis for multi-player games played on weighted graphs, where the objective of each player is to minimize the cost of reaching a specific set of target vertices. In these games, one player, referred to as the system, declares his strategy upfront. The other players, composing the environment, then rationally make their moves according to their objectives. The rational behavior of these responding players is captured through two models: they opt for strategies that either represent a Nash equilibrium or lead to a play with a Pareto-optimal cost tuple.

Cite as

Véronique Bruyère, Christophe Grandmont, and Jean-François Raskin. As Soon as Possible but Rationally. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bruyere_et_al:LIPIcs.CONCUR.2024.14,
  author =	{Bruy\`{e}re, V\'{e}ronique and Grandmont, Christophe and Raskin, Jean-Fran\c{c}ois},
  title =	{{As Soon as Possible but Rationally}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.14},
  URN =		{urn:nbn:de:0030-drops-207869},
  doi =		{10.4230/LIPIcs.CONCUR.2024.14},
  annote =	{Keywords: Games played on graphs, rational verification, rational synthesis, Nash equilibrium, Pareto-optimality, quantitative reachability objectives}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Minimising the Probabilistic Bisimilarity Distance

Authors: Stefan Kiefer and Qiyi Tang

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A labelled Markov decision process (MDP) is a labelled Markov chain with nondeterminism; i.e., together with a strategy a labelled MDP induces a labelled Markov chain. The model is related to interval Markov chains. Motivated by applications to the verification of probabilistic noninterference in security, we study problems of minimising probabilistic bisimilarity distances of labelled MDPs, in particular, whether there exist strategies such that the probabilistic bisimilarity distance between the induced labelled Markov chains is less than a given rational number, both for memoryless strategies and general strategies. We show that the distance minimisation problem is ∃ℝ-complete for memoryless strategies and undecidable for general strategies. We also study the computational complexity of the qualitative problem about making the distance less than one. This problem is known to be NP-complete for memoryless strategies. We show that it is EXPTIME-complete for general strategies.

Cite as

Stefan Kiefer and Qiyi Tang. Minimising the Probabilistic Bisimilarity Distance. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 32:1-32:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kiefer_et_al:LIPIcs.CONCUR.2024.32,
  author =	{Kiefer, Stefan and Tang, Qiyi},
  title =	{{Minimising the Probabilistic Bisimilarity Distance}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{32:1--32:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.32},
  URN =		{urn:nbn:de:0030-drops-208049},
  doi =		{10.4230/LIPIcs.CONCUR.2024.32},
  annote =	{Keywords: Markov decision processes, Markov chains}
}
Document
A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs

Authors: Marnix Suilen, Marck van der Vegt, and Sebastian Junges

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Markov Decision Processes (MDPs) model systems with uncertain transition dynamics. Multiple-environment MDPs (MEMDPs) extend MDPs. They intuitively reflect finite sets of MDPs that share the same state and action spaces but differ in the transition dynamics. The key objective in MEMDPs is to find a single strategy that satisfies a given objective in every associated MDP. The main result of this paper is PSPACE-completeness for almost-sure Rabin objectives in MEMDPs. This result clarifies the complexity landscape for MEMDPs and contrasts with results for the more general class of partially observable MDPs (POMDPs), where almost-sure reachability is already EXP-complete, and almost-sure Rabin objectives are undecidable.

Cite as

Marnix Suilen, Marck van der Vegt, and Sebastian Junges. A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 40:1-40:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{suilen_et_al:LIPIcs.CONCUR.2024.40,
  author =	{Suilen, Marnix and van der Vegt, Marck and Junges, Sebastian},
  title =	{{A PSPACE Algorithm for Almost-Sure Rabin Objectives in Multi-Environment MDPs}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{40:1--40:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.40},
  URN =		{urn:nbn:de:0030-drops-208120},
  doi =		{10.4230/LIPIcs.CONCUR.2024.40},
  annote =	{Keywords: Markov Decision Processes, partial observability, linear-time Objectives}
}
Document
Short Paper
Frugal Algorithm Selection (Short Paper)

Authors: Erdem Kuş, Özgür Akgün, Nguyen Dang, and Ian Miguel

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
When solving decision and optimisation problems, many competing algorithms (model and solver choices) have complementary strengths. Typically, there is no single algorithm that works well for all instances of a problem. Automated algorithm selection has been shown to work very well for choosing a suitable algorithm for a given instance. However, the cost of training can be prohibitively large due to running candidate algorithms on a representative set of training instances. In this work, we explore reducing this cost by choosing a subset of the training instances on which to train. We approach this problem in three ways: using active learning to decide based on prediction uncertainty, augmenting the algorithm predictors with a timeout predictor, and collecting training data using a progressively increasing timeout. We evaluate combinations of these approaches on six datasets from ASLib and present the reduction in labelling cost achieved by each option.

Cite as

Erdem Kuş, Özgür Akgün, Nguyen Dang, and Ian Miguel. Frugal Algorithm Selection (Short Paper). In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kus_et_al:LIPIcs.CP.2024.38,
  author =	{Ku\c{s}, Erdem and Akg\"{u}n, \"{O}zg\"{u}r and Dang, Nguyen and Miguel, Ian},
  title =	{{Frugal Algorithm Selection}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.38},
  URN =		{urn:nbn:de:0030-drops-207239},
  doi =		{10.4230/LIPIcs.CP.2024.38},
  annote =	{Keywords: Algorithm Selection, Active Learning}
}
Document
The Complexity of Simplifying ω-Automata Through the Alternating Cycle Decomposition

Authors: Antonio Casares and Corto Mascle

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In 2021, Casares, Colcombet and Fijalkow introduced the Alternating Cycle Decomposition (ACD), a structure used to define optimal transformations of Muller into parity automata and to obtain theoretical results about the possibility of relabelling automata with different acceptance conditions. In this work, we study the complexity of computing the ACD and its DAG-version, proving that this can be done in polynomial time for suitable representations of the acceptance condition of the Muller automaton. As corollaries, we obtain that we can decide typeness of Muller automata in polynomial time, as well as the parity index of the languages they recognise. Furthermore, we show that we can minimise in polynomial time the number of colours (resp. Rabin pairs) defining a Muller (resp. Rabin) acceptance condition, but that these problems become NP-complete when taking into account the structure of an automaton using such a condition.

Cite as

Antonio Casares and Corto Mascle. The Complexity of Simplifying ω-Automata Through the Alternating Cycle Decomposition. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.MFCS.2024.35,
  author =	{Casares, Antonio and Mascle, Corto},
  title =	{{The Complexity of Simplifying \omega-Automata Through the Alternating Cycle Decomposition}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.35},
  URN =		{urn:nbn:de:0030-drops-205916},
  doi =		{10.4230/LIPIcs.MFCS.2024.35},
  annote =	{Keywords: Omega-regular languages, Muller automata, Zielonka tree}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
The Futures of Reactive Synthesis (Dagstuhl Seminar 23391)

Authors: Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, Elizabeth Polgreen, and Rémi Morvan

Published in: Dagstuhl Reports, Volume 13, Issue 9 (2024)


Abstract
The Dagstuhl Seminar 23391 "The Futures of Reactive Synthesis" held in September 2023 was meant to gather neighbouring communities on a joint goal: Reactive Synthesis. We identified five trends: neural-symbolic computation, template-based solving for constraint programming, symbolic algorithms, syntax-guided synthesis, and model learning; and the objective was to discuss the potential futures of the field.

Cite as

Nathanaël Fijalkow, Bernd Finkbeiner, Guillermo A. Pérez, Elizabeth Polgreen, and Rémi Morvan. The Futures of Reactive Synthesis (Dagstuhl Seminar 23391). In Dagstuhl Reports, Volume 13, Issue 9, pp. 166-184, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fijalkow_et_al:DagRep.13.9.166,
  author =	{Fijalkow, Nathana\"{e}l and Finkbeiner, Bernd and P\'{e}rez, Guillermo A. and Polgreen, Elizabeth and Morvan, R\'{e}mi},
  title =	{{The Futures of Reactive Synthesis (Dagstuhl Seminar 23391)}},
  pages =	{166--184},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{9},
  editor =	{Fijalkow, Nathana\"{e}l and Finkbeiner, Bernd and P\'{e}rez, Guillermo A. and Polgreen, Elizabeth and Morvan, R\'{e}mi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.9.166},
  URN =		{urn:nbn:de:0030-drops-198259},
  doi =		{10.4230/DagRep.13.9.166},
  annote =	{Keywords: program synthesis, program verification, reactive synthesis, temporal synthesis}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
How to Play Optimally for Regular Objectives?

Authors: Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
This paper studies two-player zero-sum games played on graphs and makes contributions toward the following question: given an objective, how much memory is required to play optimally for that objective? We study regular objectives, where the goal of one of the two players is that eventually the sequence of colors along the play belongs to some regular language of finite words. We obtain different characterizations of the chromatic memory requirements for such objectives for both players, from which we derive complexity-theoretic statements: deciding whether there exist small memory structures sufficient to play optimally is NP-complete for both players. Some of our characterization results apply to a more general class of objectives: topologically closed and topologically open sets.

Cite as

Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to Play Optimally for Regular Objectives?. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 118:1-118:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bouyer_et_al:LIPIcs.ICALP.2023.118,
  author =	{Bouyer, Patricia and Fijalkow, Nathana\"{e}l and Randour, Mickael and Vandenhove, Pierre},
  title =	{{How to Play Optimally for Regular Objectives?}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{118:1--118:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.118},
  URN =		{urn:nbn:de:0030-drops-181700},
  doi =		{10.4230/LIPIcs.ICALP.2023.118},
  annote =	{Keywords: two-player games on graphs, strategy complexity, regular languages, finite-memory strategies, NP-completeness}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Characterising Memory in Infinite Games

Authors: Antonio Casares and Pierre Ohlmann

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
This paper is concerned with games of infinite duration played over potentially infinite graphs. Recently, Ohlmann (TheoretiCS 2023) presented a characterisation of objectives admitting optimal positional strategies, by means of universal graphs: an objective is positional if and only if it admits well-ordered monotone universal graphs. We extend Ohlmann’s characterisation to encompass (finite or infinite) memory upper bounds. We prove that objectives admitting optimal strategies with ε-memory less than m (a memory that cannot be updated when reading an ε-edge) are exactly those which admit well-founded monotone universal graphs whose antichains have size bounded by m. We also give a characterisation of chromatic memory by means of appropriate universal structures. Our results apply to finite as well as infinite memory bounds (for instance, to objectives with finite but unbounded memory, or with countable memory strategies). We illustrate the applicability of our framework by carrying out a few case studies, we provide examples witnessing limitations of our approach, and we discuss general closure properties which follow from our results.

Cite as

Antonio Casares and Pierre Ohlmann. Characterising Memory in Infinite Games. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 122:1-122:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{casares_et_al:LIPIcs.ICALP.2023.122,
  author =	{Casares, Antonio and Ohlmann, Pierre},
  title =	{{Characterising Memory in Infinite Games}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{122:1--122:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.122},
  URN =		{urn:nbn:de:0030-drops-181740},
  doi =		{10.4230/LIPIcs.ICALP.2023.122},
  annote =	{Keywords: Infinite duration games, Memory, Universal graphs}
}
Document
A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games

Authors: K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
The classic McNaughton-Zielonka algorithm for solving parity games has excellent performance in practice, but its worst-case asymptotic complexity is worse than that of the state-of-the-art algorithms. This work pinpoints the mechanism that is responsible for this relative underperformance and proposes a new technique that eliminates it. The culprit is the wasteful manner in which the results obtained from recursive calls are indiscriminately discarded by the algorithm whenever subgames on which the algorithm is run change. Our new technique is based on firstly enhancing the algorithm to compute attractor decompositions of subgames instead of just winning strategies on them, and then on making it carefully use attractor decompositions computed in prior recursive calls to reduce the size of subgames on which further recursive calls are made. We illustrate the new technique on the classic example of the recursive McNaughton-Zielonka algorithm, but it can be applied to other symmetric attractor-based algorithms that were inspired by it, such as the quasi-polynomial versions of the McNaughton-Zielonka algorithm based on universal trees.

Cite as

K. S. Thejaswini, Pierre Ohlmann, and Marcin Jurdziński. A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 44:1-44:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{thejaswini_et_al:LIPIcs.FSTTCS.2022.44,
  author =	{Thejaswini, K. S. and Ohlmann, Pierre and Jurdzi\'{n}ski, Marcin},
  title =	{{A Technique to Speed up Symmetric Attractor-Based Algorithms for Parity Games}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{44:1--44:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.44},
  URN =		{urn:nbn:de:0030-drops-174365},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.44},
  annote =	{Keywords: Parity games, Attractor decomposition, Quasipolynomial Algorithms, Universal trees}
}
Document
Beyond Value Iteration for Parity Games: Strategy Iteration with Universal Trees

Authors: Zhuan Khye Koh and Georg Loho

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Parity games have witnessed several new quasi-polynomial algorithms since the breakthrough result of Calude et al. (STOC 2017). The combinatorial object underlying these approaches is a universal tree, as identified by Czerwiński et al. (SODA 2019). By proving a quasi-polynomial lower bound on the size of a universal tree, they have highlighted a barrier that must be overcome by all existing approaches to attain polynomial running time. This is due to the existence of worst case instances which force these algorithms to explore a large portion of the tree. As an attempt to overcome this barrier, we propose a strategy iteration framework which can be applied on any universal tree. It is at least as fast as its value iteration counterparts, while allowing one to take bigger leaps in the universal tree. Our main technical contribution is an efficient method for computing the least fixed point of 1-player games. This is achieved via a careful adaptation of shortest path algorithms to the setting of ordered trees. By plugging in the universal tree of Jurdziński and Lazić (LICS 2017), or the Strahler universal tree of Daviaud et al. (ICALP 2020), we obtain instantiations of the general framework that take time O(mn²log nlog d) and O(mn²log³ n log d) respectively per iteration.

Cite as

Zhuan Khye Koh and Georg Loho. Beyond Value Iteration for Parity Games: Strategy Iteration with Universal Trees. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 63:1-63:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{koh_et_al:LIPIcs.MFCS.2022.63,
  author =	{Koh, Zhuan Khye and Loho, Georg},
  title =	{{Beyond Value Iteration for Parity Games: Strategy Iteration with Universal Trees}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{63:1--63:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.63},
  URN =		{urn:nbn:de:0030-drops-168619},
  doi =		{10.4230/LIPIcs.MFCS.2022.63},
  annote =	{Keywords: parity games, strategy iteration, value iteration, progress measure, universal trees}
}
Document
On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions

Authors: Antonio Casares

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
In this paper, we relate the problem of determining the chromatic memory requirements of Muller conditions with the minimisation of transition-based Rabin automata. Our first contribution is a proof of the NP-completeness of the minimisation of transition-based Rabin automata. Our second contribution concerns the memory requirements of games over graphs using Muller conditions. A memory structure is a finite state machine that implements a strategy and is updated after reading the edges of the game; the special case of chromatic memories being those structures whose update function only consider the colours of the edges. We prove that the minimal amount of chromatic memory required in games using a given Muller condition is exactly the size of a minimal Rabin automaton recognising this condition. Combining these two results, we deduce that finding the chromatic memory requirements of a Muller condition is NP-complete. This characterisation also allows us to prove that chromatic memories cannot be optimal in general, disproving a conjecture by Kopczyński.

Cite as

Antonio Casares. On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{casares:LIPIcs.CSL.2022.12,
  author =	{Casares, Antonio},
  title =	{{On the Minimisation of Transition-Based Rabin Automata and the Chromatic Memory Requirements of Muller Conditions}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.12},
  URN =		{urn:nbn:de:0030-drops-157322},
  doi =		{10.4230/LIPIcs.CSL.2022.12},
  annote =	{Keywords: Automata on Infinite Words, Games on Graphs, Arena-Independent Memory, Complexity}
}
Document
Revisiting Parameter Synthesis for One-Counter Automata

Authors: Guillermo A. Pérez and Ritam Raha

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
We study the synthesis problem for one-counter automata with parameters. One-counter automata are obtained by extending classical finite-state automata with a counter whose value can range over non-negative integers and be tested for zero. The updates and tests applicable to the counter can further be made parametric by introducing a set of integer-valued variables called parameters. The synthesis problem for such automata asks whether there exists a valuation of the parameters such that all infinite runs of the automaton satisfy some ω-regular property. Lechner showed that (the complement of) the problem can be encoded in a restricted one-alternation fragment of Presburger arithmetic with divisibility. In this work (i) we argue that said fragment, called ∀∃_RPAD^+, is unfortunately undecidable. Nevertheless, by a careful re-encoding of the problem into a decidable restriction of ∀∃_RPAD^+, (ii) we prove that the synthesis problem is decidable in general and in 2NEXP for several fixed ω-regular properties. Finally, (iii) we give polynomial-space algorithms for the special cases of the problem where parameters can only be used in counter tests.

Cite as

Guillermo A. Pérez and Ritam Raha. Revisiting Parameter Synthesis for One-Counter Automata. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 33:1-33:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CSL.2022.33,
  author =	{P\'{e}rez, Guillermo A. and Raha, Ritam},
  title =	{{Revisiting Parameter Synthesis for One-Counter Automata}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{33:1--33:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.33},
  URN =		{urn:nbn:de:0030-drops-157534},
  doi =		{10.4230/LIPIcs.CSL.2022.33},
  annote =	{Keywords: Parametric one-counter automata, Reachability, Software Verification}
}
  • Refine by Author
  • 15 Fijalkow, Nathanaël
  • 5 Ohlmann, Pierre
  • 4 Casares, Antonio
  • 3 Colcombet, Thomas
  • 2 Fijalkow, Nathanael
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Logic and verification
  • 5 Theory of computation → Automata over infinite objects
  • 4 Theory of computation → Formal languages and automata theory
  • 2 Computing methodologies → Artificial intelligence
  • 2 Theory of computation → Constraint and logic programming
  • Show More...

  • Refine by Keyword
  • 2 Probabilistic Automata
  • 2 Synthesis
  • 2 Two-player games
  • 2 Universal graphs
  • 1 Active Learning
  • Show More...

  • Refine by Type
  • 30 document

  • Refine by Publication Year
  • 9 2024
  • 4 2022
  • 3 2017
  • 3 2020
  • 2 2013
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail