75 Search Results for "Karlin, Anna R."


Volume

LIPIcs, Volume 94

9th Innovations in Theoretical Computer Science Conference (ITCS 2018)

ITCS 2018, January 11, 2018, Cambridge, MA, USA

Editors: Anna R. Karlin

Document
Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra

Authors: Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
In the Equitable Connected Partition (ECP for short) problem, we are given a graph G = (V,E) together with an integer p ∈ ℕ, and our goal is to find a partition of V into p parts such that each part induces a connected sub-graph of G and the size of each two parts differs by at most 1. On the one hand, the problem is known to be NP-hard in general and W[1]-hard with respect to the path-width, the feedback-vertex set, and the number of parts p combined. On the other hand, fixed-parameter algorithms are known for parameters the vertex-integrity and the max leaf number. In this work, we systematically study ECP with respect to various structural restrictions of the underlying graph and provide a clear dichotomy of its parameterised complexity. Specifically, we show that the problem is in FPT when parameterized by the modular-width and the distance to clique. Next, we prove W[1]-hardness with respect to the distance to cluster, the 4-path vertex cover number, the distance to disjoint paths, and the feedback-edge set, and NP-hardness for constant shrub-depth graphs. Our hardness results are complemented by matching algorithmic upper-bounds: we give an XP algorithm for parameterisation by the tree-width and the distance to cluster. We also give an improved FPT algorithm for parameterisation by the vertex integrity and the first explicit FPT algorithm for the 3-path vertex cover number. The main ingredient of these algorithms is a formulation of ECP as N-fold IP, which clearly indicates that such formulations may, in certain scenarios, significantly outperform existing algorithms based on the famous algorithm of Lenstra.

Cite as

Václav Blažej, Dušan Knop, Jan Pokorný, and Šimon Schierreich. Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blazej_et_al:LIPIcs.MFCS.2024.29,
  author =	{Bla\v{z}ej, V\'{a}clav and Knop, Du\v{s}an and Pokorn\'{y}, Jan and Schierreich, \v{S}imon},
  title =	{{Equitable Connected Partition and Structural Parameters Revisited: N-Fold Beats Lenstra}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.29},
  URN =		{urn:nbn:de:0030-drops-205857},
  doi =		{10.4230/LIPIcs.MFCS.2024.29},
  annote =	{Keywords: Equitable Connected Partition, structural parameters, fixed-parameter tractability, N-fold integer programming, tree-width, shrub-depth, modular-width}
}
Document
Improved Trade-Offs Between Amortization and Download Bandwidth for Linear HSS

Authors: Keller Blackwell and Mary Wootters

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
A Homomorphic Secret Sharing (HSS) scheme is a secret-sharing scheme that shares a secret x among s servers, and additionally allows an output client to reconstruct some function f(x) using information that can be locally computed by each server. A key parameter in HSS schemes is download rate, which quantifies how much information the output client needs to download from the servers. Often, download rate is improved by amortizing over 𝓁 instances of the problem, making 𝓁 also a key parameter of interest. Recent work [Fosli et al., 2022] established a limit on the download rate of linear HSS schemes for computing low-degree polynomials and constructed schemes that achieve this optimal download rate; their schemes required amortization over 𝓁 = Ω(s log(s)) instances of the problem. Subsequent work [Blackwell and Wootters, 2023] completely characterized linear HSS schemes that achieve optimal download rate in terms of a coding-theoretic notion termed optimal labelweight codes. A consequence of this characterization was that 𝓁 = Ω(s log(s)) is in fact necessary to achieve optimal download rate. In this paper, we characterize all linear HSS schemes, showing that schemes of any download rate are equivalent to a generalization of optimal labelweight codes. This equivalence is constructive and provides a way to obtain an explicit linear HSS scheme from any linear code. Using this characterization, we present explicit linear HSS schemes with slightly sub-optimal rate but with much improved amortization 𝓁 = O(s). Our constructions are based on algebraic geometry codes (specifically Hermitian codes and Goppa codes).

Cite as

Keller Blackwell and Mary Wootters. Improved Trade-Offs Between Amortization and Download Bandwidth for Linear HSS. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{blackwell_et_al:LIPIcs.ITC.2024.7,
  author =	{Blackwell, Keller and Wootters, Mary},
  title =	{{Improved Trade-Offs Between Amortization and Download Bandwidth for Linear HSS}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.7},
  URN =		{urn:nbn:de:0030-drops-205156},
  doi =		{10.4230/LIPIcs.ITC.2024.7},
  annote =	{Keywords: Error Correcting Codes, Homomorphic Secret Sharing}
}
Document
Streaming Zero-Knowledge Proofs

Authors: Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are n^o(1). En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

Cite as

Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey. Streaming Zero-Knowledge Proofs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 2:1-2:66, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cormode_et_al:LIPIcs.CCC.2024.2,
  author =	{Cormode, Graham and Dall'Agnol, Marcel and Gur, Tom and Hickey, Chris},
  title =	{{Streaming Zero-Knowledge Proofs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{2:1--2:66},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.2},
  URN =		{urn:nbn:de:0030-drops-203988},
  doi =		{10.4230/LIPIcs.CCC.2024.2},
  annote =	{Keywords: Zero-knowledge proofs, streaming algorithms, computational complexity}
}
Document
Distribution-Free Proofs of Proximity

Authors: Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Motivated by the fact that input distributions are often unknown in advance, distribution-free property testing considers a setting in which the algorithmic task is to accept functions f: [n] → {0,1} having a certain property Π and reject functions that are ε-far from Π, where the distance is measured according to an arbitrary and unknown input distribution 𝒟 ∼ [n]. As usual in property testing, the tester is required to do so while making only a sublinear number of input queries, but as the distribution is unknown, we also allow a sublinear number of samples from the distribution 𝒟. In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs) in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover. Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and any (trade-off) parameter τ ≤ √n, we construct a df-IPP for Π with respect to ε, that has query and sample complexities τ+O(1/ε), and communication complexity Õ(n/τ + 1/ε). For τ as above and sufficiently large ε (namely, when ε > τ/n), this result matches the parameters of the best-known general purpose IPPs in the standard uniform setting. Moreover, for such τ, its parameters are optimal up to poly-logarithmic factors under reasonable cryptographic assumptions for the same regime of ε as the uniform setting, i.e., when ε ≥ 1/τ. For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity Ω(1/ε), which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with the same query complexity). With the aim of improving on this gap, we further show that for IPPs over specialised, but large distribution families, such as sufficiently smooth distributions and product distributions, the communication complexity can be reduced to Õ(n/τ^{1-o(1)}). In addition, we show that for certain natural families of languages, such as symmetric and (relaxed) self-correctable languages, it is possible to further improve the efficiency of distribution-free IPPs.

Cite as

Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum. Distribution-Free Proofs of Proximity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aaronson_et_al:LIPIcs.CCC.2024.24,
  author =	{Aaronson, Hugo and Gur, Tom and Rajgopal, Ninad and Rothblum, Ron D.},
  title =	{{Distribution-Free Proofs of Proximity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.24},
  URN =		{urn:nbn:de:0030-drops-204204},
  doi =		{10.4230/LIPIcs.CCC.2024.24},
  annote =	{Keywords: Property Testing, Interactive Proofs, Distribution-Free Property Testing}
}
Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Sublinear Algorithms for TSP via Path Covers

Authors: Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study sublinear time algorithms for the traveling salesman problem (TSP). First, we focus on the closely related maximum path cover problem, which asks for a collection of vertex disjoint paths that include the maximum number of edges. We show that for any fixed ε > 0, there is an algorithm that (1/2 - ε)-approximates the maximum path cover size of an n-vertex graph in Õ(n) time. This improves upon a (3/8-ε)-approximate Õ(n √n)-time algorithm of Chen, Kannan, and Khanna [ICALP'20]. Equipped with our path cover algorithm, we give an Õ(n) time algorithm that estimates the cost of (1,2)-TSP within a factor of (1.5+ε) which is an improvement over a folklore (1.75 + ε)-approximate Õ(n)-time algorithm, as well as a (1.625+ε)-approximate Õ(n√n)-time algorithm of [CHK ICALP'20]. For graphic TSP, we present an Õ(n) algorithm that estimates the cost of graphic TSP within a factor of 1.83 which is an improvement over a 1.92-approximate Õ(n) time algorithm due to [CHK ICALP'20, Behnezhad FOCS'21]. We show that the approximation can be further improved to 1.66 using n^{2-Ω(1)} time. All of our Õ(n) time algorithms are information-theoretically time-optimal up to polylog n factors. Additionally, we show that our approximation guarantees for path cover and (1,2)-TSP hit a natural barrier: We show better approximations require better sublinear time algorithms for the well-studied maximum matching problem.

Cite as

Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear Algorithms for TSP via Path Covers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{behnezhad_et_al:LIPIcs.ICALP.2024.19,
  author =	{Behnezhad, Soheil and Roghani, Mohammad and Rubinstein, Aviad and Saberi, Amin},
  title =	{{Sublinear Algorithms for TSP via Path Covers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.19},
  URN =		{urn:nbn:de:0030-drops-201623},
  doi =		{10.4230/LIPIcs.ICALP.2024.19},
  annote =	{Keywords: Sublinear Algorithms, Traveling Salesman Problem, Approximation Algorithm, (1, 2)-TSP, Graphic TSP}
}
Document
Track A: Algorithms, Complexity and Games
From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP

Authors: Leonid Gurvits, Nathan Klein, and Jonathan Leake

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of their approximation factor for metric TSP. Our results also allow for a more streamlined analysis of the algorithm. To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the productization technique for bounding the capacity of a real stable polynomial. This technique allows one to reduce certain inequalities for real stable polynomials to products of affine linear forms, which have an underlying matrix structure. In this paper, we push this technique further by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial structure yields a clean induction argument, which implies our stronger bounds. In general, we believe the results of this paper will lead to further improvement and simplification of the analysis of various combinatorial and probabilistic bounds and algorithms.

Cite as

Leonid Gurvits, Nathan Klein, and Jonathan Leake. From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurvits_et_al:LIPIcs.ICALP.2024.79,
  author =	{Gurvits, Leonid and Klein, Nathan and Leake, Jonathan},
  title =	{{From Trees to Polynomials and Back Again: New Capacity Bounds with Applications to TSP}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.79},
  URN =		{urn:nbn:de:0030-drops-202229},
  doi =		{10.4230/LIPIcs.ICALP.2024.79},
  annote =	{Keywords: traveling salesman problem, strongly Rayleigh distributions, polynomial capacity, probability lower bounds, combinatorial lower bounds}
}
Document
Track A: Algorithms, Complexity and Games
On the Cut-Query Complexity of Approximating Max-Cut

Authors: Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [Rubinstein et al., 2018]. Graph algorithms in this cut query model and other query models have recently been studied for various other problems such as min-cut, connectivity, bipartiteness, and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case of submodular function maximization: on query S ⊆ V, the oracle returns the total weight of the cut between S and V\S. Our first main technical result is a lower bound stating that a deterministic algorithm achieving a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut dimension to rule out approximation (prior work of [Graur et al., 2020] introducing the cut dimension only rules out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected weighted graphs (prior work of [Rubinstein et al., 2018] holds only for unweighted graphs). To complement these results, for most constants c ∈ (0,1], we nail down the query complexity of achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/log n) queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic algorithm requires Ω(n²) queries to find an exact max-cut (enough to learn the entire graph).

Cite as

Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg. On the Cut-Query Complexity of Approximating Max-Cut. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 115:1-115:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{plevrakis_et_al:LIPIcs.ICALP.2024.115,
  author =	{Plevrakis, Orestis and Ragavan, Seyoon and Weinberg, S. Matthew},
  title =	{{On the Cut-Query Complexity of Approximating Max-Cut}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{115:1--115:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.115},
  URN =		{urn:nbn:de:0030-drops-202587},
  doi =		{10.4230/LIPIcs.ICALP.2024.115},
  annote =	{Keywords: query complexity, maximum cut, approximation algorithms, graph sparsification}
}
Document
Invited Talk
A (Slightly) Improved Approximation Algorithm for the Metric Traveling Salesperson Problem (Invited Talk)

Authors: Anna R. Karlin

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
We describe recent joint work with Nathan Klein and Shayan Oveis Gharan showing that for any metric TSP instance, the max entropy algorithm studied by [Anna R. Karlin et al., 2021] returns a solution of expected cost at most 3/2-ε times the cost of the optimal solution to the subtour elimination LP and hence is a 3/2-ε approximation for the metric TSP problem. The research discussed comes from [Anna R. Karlin et al., 2021], [Anna R. Karlin et al., 2022] and [Anna R. Karlin et al., 2022].

Cite as

Anna R. Karlin. A (Slightly) Improved Approximation Algorithm for the Metric Traveling Salesperson Problem (Invited Talk). In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{karlin:LIPIcs.ICALP.2023.1,
  author =	{Karlin, Anna R.},
  title =	{{A (Slightly) Improved Approximation Algorithm for the Metric Traveling Salesperson Problem}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.1},
  URN =		{urn:nbn:de:0030-drops-180531},
  doi =		{10.4230/LIPIcs.ICALP.2023.1},
  annote =	{Keywords: Traveling Salesperson Problem, approximation algorithm}
}
Document
Matroid Partition Property and the Secretary Problem

Authors: Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A matroid M on a set E of elements has the α-partition property, for some α > 0, if it is possible to (randomly) construct a partition matroid 𝒫 on (a subset of) elements of M such that every independent set of 𝒫 is independent in M and for any weight function w:E → ℝ_{≥0}, the expected value of the optimum of the matroid secretary problem on 𝒫 is at least an α-fraction of the optimum on M. We show that the complete binary matroid, B_d on 𝔽₂^d does not satisfy the α-partition property for any constant α > 0 (independent of d). Furthermore, we refute a recent conjecture of [Kristóf Bérczi et al., 2021] by showing the same matroid is 2^d/d-colorable but cannot be reduced to an α 2^d/d-colorable partition matroid for any α that is sublinear in d.

Cite as

Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. Matroid Partition Property and the Secretary Problem. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 2:1-2:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abdolazimi_et_al:LIPIcs.ITCS.2023.2,
  author =	{Abdolazimi, Dorna and Karlin, Anna R. and Klein, Nathan and Oveis Gharan, Shayan},
  title =	{{Matroid Partition Property and the Secretary Problem}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{2:1--2:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.2},
  URN =		{urn:nbn:de:0030-drops-175051},
  doi =		{10.4230/LIPIcs.ITCS.2023.2},
  annote =	{Keywords: Online algorithms, Matroids, Matroid secretary problem}
}
Document
Complete Volume
LIPIcs, Volume 94, ITCS'18, Complete Volume

Authors: Anna R. Karlin

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
LIPIcs, Volume 94, ITCS'18, Complete Volume

Cite as

9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Proceedings{karlin:LIPIcs.ITCS.2018,
  title =	{{LIPIcs, Volume 94, ITCS'18, Complete Volume}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018},
  URN =		{urn:nbn:de:0030-drops-84419},
  doi =		{10.4230/LIPIcs.ITCS.2018},
  annote =	{Keywords: Theory of Computation, Mathematics of Computing}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Anna R. Karlin

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{karlin:LIPIcs.ITCS.2018.0,
  author =	{Karlin, Anna R.},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{0:i--0:xii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.0},
  URN =		{urn:nbn:de:0030-drops-83104},
  doi =		{10.4230/LIPIcs.ITCS.2018.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Barriers for Rank Methods in Arithmetic Complexity

Authors: Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson

Published in: LIPIcs, Volume 94, 9th Innovations in Theoretical Computer Science Conference (ITCS 2018)


Abstract
Arithmetic complexity, the study of the cost of computing polynomials via additions and multiplications, is considered (for many good reasons) simpler to understand than Boolean complexity, namely computing Boolean functions via logical gates. And indeed, we seem to have significantly more lower bound techniques and results in arithmetic complexity than in Boolean complexity. Despite many successes and rapid progress, however, foundational challenges, like proving super-polynomial lower bounds on circuit or formula size for explicit polynomials, or super-linear lower bounds on explicit 3-dimensional tensors, remain elusive. At the same time (and possibly for similar reasons), we have plenty more excuses, in the form of "barrier results" for failing to prove basic lower bounds in Boolean complexity than in arithmetic complexity. Efforts to find barriers to arithmetic lower bound techniques seem harder, and despite some attempts we have no excuses of similar quality for these failures in arithmetic complexity. This paper aims to add to this study. In this paper we address rank methods, which were long recognized as encompassing and abstracting almost all known arithmetic lower bounds to-date, including the most recent impressive successes. Rank methods (under the name of flattenings) are also in wide use in algebraic geometry for proving tensor rank and symmetric tensor rank lower bounds. Our main results are barriers to these methods. In particular, 1. Rank methods cannot prove better than (2^d)*n^(d/2) lower bound on the tensor rank of any d-dimensional tensor of side n. (In particular, they cannot prove super-linear, indeed even >8n tensor rank lower bounds for any 3-dimensional tensors.) 2. Rank methods cannot prove (d+1)n^(d/2) on the Waring rank of any n-variate polynomial of degree d. (In particular, they cannot prove such lower bounds on stronger models, including depth-3 circuits.) The proofs of these bounds use simple linear-algebraic arguments, leveraging connections between the symbolic rank of matrix polynomials and the usual rank of their evaluations. These techniques can perhaps be extended to barriers for other arithmetic models on which progress has halted. To see how these barrier results directly inform the state-of-art in arithmetic complexity we note the following. First, the bounds above nearly match the best explicit bounds we know for these models, hence offer an explanations why the rank methods got stuck there. Second, the bounds above are a far cry (quadratically away) from the true complexity (e.g. of random polynomials) in these models, which if achieved (by any methods), are known to imply super-polynomial formula lower bounds. We also explain the relation of our barrier results to other attempts, and in particular how they significantly differ from the recent attempts to find analogues of "natural proofs" for arithmetic complexity. Finally, we discuss the few arithmetic lower bound approaches which fall outside rank methods, and some natural directions our barriers suggest.

Cite as

Klim Efremenko, Ankit Garg, Rafael Oliveira, and Avi Wigderson. Barriers for Rank Methods in Arithmetic Complexity. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 94, pp. 1:1-1:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{efremenko_et_al:LIPIcs.ITCS.2018.1,
  author =	{Efremenko, Klim and Garg, Ankit and Oliveira, Rafael and Wigderson, Avi},
  title =	{{Barriers for Rank Methods in Arithmetic Complexity}},
  booktitle =	{9th Innovations in Theoretical Computer Science Conference (ITCS 2018)},
  pages =	{1:1--1:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-060-6},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{94},
  editor =	{Karlin, Anna R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.1},
  URN =		{urn:nbn:de:0030-drops-83506},
  doi =		{10.4230/LIPIcs.ITCS.2018.1},
  annote =	{Keywords: Lower Bounds, Barriers, Partial Derivatives, Flattenings, Algebraic Complexity}
}
  • Refine by Author
  • 5 Karlin, Anna R.
  • 4 Gur, Tom
  • 3 Rothblum, Ron D.
  • 3 Rubinstein, Aviad
  • 3 Valiant, Gregory
  • Show More...

  • Refine by Classification
  • 2 Mathematics of computing → Approximation algorithms
  • 2 Theory of computation → Interactive proof systems
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Mathematics of computing → Graph algorithms
  • 1 Mathematics of computing → Probability and statistics
  • Show More...

  • Refine by Keyword
  • 3 Interactive Proofs
  • 2 Algorithms
  • 2 Constraint Satisfaction Problems
  • 2 Differential Privacy
  • 2 Fine-grained Complexity
  • Show More...

  • Refine by Type
  • 74 document
  • 1 volume

  • Refine by Publication Year
  • 62 2018
  • 9 2024
  • 2 2023
  • 1 2000
  • 1 2016

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail