8 Search Results for "Klein, Felix"


Document
Storylines with a Protagonist

Authors: Tim Hegemann and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Storyline visualizations show interactions between a given set of characters over time. Each character is represented by an x-monotone curve. A meeting is represented by a vertical bar that is crossed by the curves of exactly those characters that participate in the meeting. Therefore, character curves may have to cross each other. In the context of publication networks, we consider storylines where the characters are authors and the meetings are joint publications. We are especially interested in visualizing a group of colleagues centered around an author, the protagonist, who participates in all selected publications. For such instances, we propose a drawing style where the protagonist’s curve is drawn at a prominent position and never crossed by any other author’s curve. We consider two variants of storylines with a protagonist. In the one-sided variant, the protagonist is required to be drawn at the top position. In this restricted setting, we can efficiently compute a drawing with the minimum number of pairwise crossings, whereas we show that it is NP-hard to minimize the number of block crossings (i.e., pairs of blocks of parallel curves that intersect each other). In the two-sided variant, the task is to split the set of co-authors of the protagonist into two groups, and to place the curves of one group above and the curves of the other group below the protagonist’s curve such that the total number of (block) crossings is minimized. As our main result, we present an algorithm for bundling a sequence of pairwise crossings into a sequence of few block crossings (in the absence of meetings). It exploits a connection to a rectangle dissection problem. In the presence of meetings, it yields results that are very close to a lower bound. Based on this bundling algorithm and our exact algorithm for the one-sided variant, we present a new heuristic for computing two-sided storylines with few block crossings. We perform an extensive experimental study using publication data of 81 protagonists from GD 2023 and their most frequent collaborators over the last ten years. Our study shows that, for two-sided storylines with a protagonist, our new heuristic uses fewer block crossings (and fewer pairwise crossings) than two heuristics for block crossing minimization in general storylines.

Cite as

Tim Hegemann and Alexander Wolff. Storylines with a Protagonist. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hegemann_et_al:LIPIcs.GD.2024.26,
  author =	{Hegemann, Tim and Wolff, Alexander},
  title =	{{Storylines with a Protagonist}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.26},
  URN =		{urn:nbn:de:0030-drops-213109},
  doi =		{10.4230/LIPIcs.GD.2024.26},
  annote =	{Keywords: Storyline visualization, storyline with a protagonist, crossing minimization, block crossings}
}
Document
Holes in Convex and Simple Drawings

Authors: Helena Bergold, Joachim Orthaber, Manfred Scheucher, and Felix Schröder

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erdős-Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of k-holes for simple drawings and study their existence with respect to the convexity hierarchy. We present a family of simple drawings without 4-holes and prove a generalization of Gerken’s empty hexagon theorem for convex drawings. A crucial intermediate step will be the structural investigation of pseudolinear subdrawings in convex drawings.

Cite as

Helena Bergold, Joachim Orthaber, Manfred Scheucher, and Felix Schröder. Holes in Convex and Simple Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 5:1-5:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.GD.2024.5,
  author =	{Bergold, Helena and Orthaber, Joachim and Scheucher, Manfred and Schr\"{o}der, Felix},
  title =	{{Holes in Convex and Simple Drawings}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{5:1--5:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.5},
  URN =		{urn:nbn:de:0030-drops-212895},
  doi =		{10.4230/LIPIcs.GD.2024.5},
  annote =	{Keywords: simple topological graph, convexity hierarchy, k-gon, k-hole, empty k-cycle, Erd\H{o}s-Szekeres theorem, Empty Hexagon theorem, planar point set, pseudolinear drawing}
}
Document
The Density Formula: One Lemma to Bound Them All

Authors: Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, and Torsten Ueckerdt

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We introduce the Density Formula for (topological) drawings of graphs in the plane or on the sphere, which relates the number of edges, vertices, crossings, and sizes of cells in the drawing. We demonstrate its capability by providing several applications: we prove tight upper bounds on the edge density of various beyond-planar graph classes, including so-called k-planar graphs with k = 1,2, fan-crossing/fan-planar graphs, k-bend RAC-graphs with k = 0,1,2, quasiplanar graphs, and k^+-real face graphs. In some cases (1-bend and 2-bend RAC-graphs and fan-crossing/fan-planar graphs), we thereby obtain the first tight upper bounds on the edge density of the respective graph classes. In other cases, we give new streamlined and significantly shorter proofs for bounds that were already known in the literature. Thanks to the Density Formula, all of our proofs are mostly elementary counting and mostly circumvent the typical intricate case analysis found in earlier proofs. Further, in some cases (simple and non-homotopic quasiplanar graphs), our alternative proofs using the Density Formula lead to the first tight lower bound examples.

Cite as

Michael Kaufmann, Boris Klemz, Kristin Knorr, Meghana M. Reddy, Felix Schröder, and Torsten Ueckerdt. The Density Formula: One Lemma to Bound Them All. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaufmann_et_al:LIPIcs.GD.2024.7,
  author =	{Kaufmann, Michael and Klemz, Boris and Knorr, Kristin and M. Reddy, Meghana and Schr\"{o}der, Felix and Ueckerdt, Torsten},
  title =	{{The Density Formula: One Lemma to Bound Them All}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.7},
  URN =		{urn:nbn:de:0030-drops-212913},
  doi =		{10.4230/LIPIcs.GD.2024.7},
  annote =	{Keywords: beyond-planar, density, fan-planar, fan-crossing, right-angle crossing, quasiplanar}
}
Document
GraphTrials: Visual Proofs of Graph Properties

Authors: Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Graph and network visualization supports exploration, analysis and communication of relational data arising in many domains: from biological and social networks, to transportation and powergrid systems. With the arrival of AI-based question-answering tools, issues of trustworthiness and explainability of generated answers motivate a greater role for visualization. In the context of graphs, we see the need for visualizations that can convince a critical audience that an assertion about the graph under analysis is valid. The requirements for such representations that convey precisely one specific graph property are quite different from standard network visualization criteria which optimize general aesthetics and readability. In this paper, we aim to provide a comprehensive introduction to visual proofs of graph properties and a foundation for further research in the area. We present a framework that defines what it means to visually prove a graph property. In the process, we introduce the notion of a visual certificate, that is, a specialized faithful graph visualization that leverages the viewer’s perception, in particular, pre-attentive processing (e. g. via pop-out effects), to verify a given assertion about the represented graph. We also discuss the relationships between visual complexity, cognitive load and complexity theory, and propose a classification based on visual proof complexity. Finally, we provide examples of visual certificates for problems in different visual proof complexity classes.

Cite as

Henry Förster, Felix Klesen, Tim Dwyer, Peter Eades, Seok-Hee Hong, Stephen G. Kobourov, Giuseppe Liotta, Kazuo Misue, Fabrizio Montecchiani, Alexander Pastukhov, and Falk Schreiber. GraphTrials: Visual Proofs of Graph Properties. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{forster_et_al:LIPIcs.GD.2024.16,
  author =	{F\"{o}rster, Henry and Klesen, Felix and Dwyer, Tim and Eades, Peter and Hong, Seok-Hee and Kobourov, Stephen G. and Liotta, Giuseppe and Misue, Kazuo and Montecchiani, Fabrizio and Pastukhov, Alexander and Schreiber, Falk},
  title =	{{GraphTrials: Visual Proofs of Graph Properties}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.16},
  URN =		{urn:nbn:de:0030-drops-213005},
  doi =		{10.4230/LIPIcs.GD.2024.16},
  annote =	{Keywords: Graph Visualization, Theory of Visualization, Visual Proof}
}
Document
Beyond the Threaded Programming Model on Real-Time Operating Systems

Authors: Erling Rennemo Jellum, Shaokai Lin, Peter Donovan, Efsane Soyer, Fuzail Shakir, Torleiv Bryne, Milica Orlandic, Marten Lohstroh, and Edward A. Lee

Published in: OASIcs, Volume 108, Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)


Abstract
The use of a real-time operating system (RTOS) raises the abstraction level for embedded systems design when compared to traditional bare-metal programming, resulting in simpler and more reusable application code. Modern RTOSes for resource-constrained platforms, like Zephyr and FreeRTOS, also offer threading support, but this kind of shared memory concurrency is a poor fit for expressing the reactive and interactive behaviors that are common in embedded systems. To address this, alternative concurrency models like the actor model or communicating sequential processes have been proposed. While those alternatives enable reactive design patterns, they fail to deliver determinism and do not address timing. This makes it difficult to verify that implemented behavior is as intended and impossible to specify timing constraints in a portable way. This makes it hard to create reusable library components out of common embedded design patterns, forcing developers to keep reinventing the wheel for each application and each platform. In this paper, we introduce the embedded target of Lingua Franca (LF) as a means to move beyond the threaded programming model provided by RTOSes and improve the state of the art in embedded programming. LF is based on the reactor model of computation, which is reactive, deterministic, and timed, providing a means to express concurrency and timing in a platform-independent way. We compare the performance of LF versus threaded C code - both running on Zephyr - in terms of response time, timing precision, throughput, and memory footprint.

Cite as

Erling Rennemo Jellum, Shaokai Lin, Peter Donovan, Efsane Soyer, Fuzail Shakir, Torleiv Bryne, Milica Orlandic, Marten Lohstroh, and Edward A. Lee. Beyond the Threaded Programming Model on Real-Time Operating Systems. In Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023). Open Access Series in Informatics (OASIcs), Volume 108, pp. 3:1-3:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jellum_et_al:OASIcs.NG-RES.2023.3,
  author =	{Jellum, Erling Rennemo and Lin, Shaokai and Donovan, Peter and Soyer, Efsane and Shakir, Fuzail and Bryne, Torleiv and Orlandic, Milica and Lohstroh, Marten and Lee, Edward A.},
  title =	{{Beyond the Threaded Programming Model on Real-Time Operating Systems}},
  booktitle =	{Fourth Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2023)},
  pages =	{3:1--3:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-268-6},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{108},
  editor =	{Terraneo, Federico and Cattaneo, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2023.3},
  URN =		{urn:nbn:de:0030-drops-177348},
  doi =		{10.4230/OASIcs.NG-RES.2023.3},
  annote =	{Keywords: Real time, concurrency, reactors, Lingua Franca, RTOS}
}
Document
Convex Hulls of Random Order Types

Authors: Xavier Goaoc and Emo Welzl

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We establish the following two main results on order types of points in general position in the plane (realizable simple planar order types, realizable uniform acyclic oriented matroids of rank 3): (a) The number of extreme points in an n-point order type, chosen uniformly at random from all such order types, is on average 4+o(1). For labeled order types, this number has average 4-8/(n^2 - n +2) and variance at most 3. (b) The (labeled) order types read off a set of n points sampled independently from the uniform measure on a convex planar domain, smooth or polygonal, or from a Gaussian distribution are concentrated, i.e., such sampling typically encounters only a vanishingly small fraction of all order types of the given size. Result (a) generalizes to arbitrary dimension d for labeled order types with the average number of extreme points 2d+o(1) and constant variance. We also discuss to what extent our methods generalize to the abstract setting of uniform acyclic oriented matroids. Moreover, our methods allow to show the following relative of the Erdős-Szekeres theorem: for any fixed k, as n → ∞, a proportion 1 - O(1/n) of the n-point simple order types contain a triangle enclosing a convex k-chain over an edge. For the unlabeled case in (a), we prove that for any antipodal, finite subset of the 2-dimensional sphere, the group of orientation preserving bijections is cyclic, dihedral or one of A₄, S₄ or A₅ (and each case is possible). These are the finite subgroups of SO(3) and our proof follows the lines of their characterization by Felix Klein.

Cite as

Xavier Goaoc and Emo Welzl. Convex Hulls of Random Order Types. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 49:1-49:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SoCG.2020.49,
  author =	{Goaoc, Xavier and Welzl, Emo},
  title =	{{Convex Hulls of Random Order Types}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{49:1--49:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.49},
  URN =		{urn:nbn:de:0030-drops-122074},
  doi =		{10.4230/LIPIcs.SoCG.2020.49},
  annote =	{Keywords: order type, oriented matroid, Sylvester’s Four-Point Problem, random convex hull, projective plane, excluded pattern, Hadwiger’s transversal theorem, hairy ball theorem}
}
Document
Prompt Delay

Authors: Felix Klein and Martin Zimmermann

Published in: LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)


Abstract
Delay games are two-player games of infinite duration in which one player may delay her moves to obtain a lookahead on her opponent's moves. Recently, such games with quantitative winning conditions in weak MSO with the unbounding quantifier were studied, but their properties turned out to be unsatisfactory. In particular, unbounded lookahead is in general necessary. Here, we study delay games with winning conditions given by Prompt-LTL, Linear Temporal Logic equipped with a parameterized eventually operator whose scope is bounded. Our main result shows that solving Prompt-LTL delay games is complete for triply-exponential time. Furthermore, we give tight triply-exponential bounds on the necessary lookahead and on the scope of the parameterized eventually operator. Thus, we identify Prompt-LTL as the first known class of well-behaved quantitative winning conditions for delay games. Finally, we show that applying our techniques to delay games with omega-regular winning conditions answers open questions in the cases where the winning conditions are given by non-deterministic, universal, or alternating automata.

Cite as

Felix Klein and Martin Zimmermann. Prompt Delay. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 43:1-43:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{klein_et_al:LIPIcs.FSTTCS.2016.43,
  author =	{Klein, Felix and Zimmermann, Martin},
  title =	{{Prompt Delay}},
  booktitle =	{36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)},
  pages =	{43:1--43:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-027-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{65},
  editor =	{Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.43},
  URN =		{urn:nbn:de:0030-drops-68786},
  doi =		{10.4230/LIPIcs.FSTTCS.2016.43},
  annote =	{Keywords: Infinite Games, Delay Games, Prompt-LTL, LTL}
}
Document
What are Strategies in Delay Games? Borel Determinacy for Games with Lookahead

Authors: Felix Klein and Martin Zimmermann

Published in: LIPIcs, Volume 41, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015)


Abstract
We investigate determinacy of delay games with Borel winning conditions, infinite-duration two-player games in which one player may delay her moves to obtain a lookahead on her opponent's moves. First, we prove determinacy of such games with respect to a fixed evolution of the lookahead. However, strategies in such games may depend on information about the evolution. Thus, we introduce different notions of universal strategies for both players, which are evolution-independent, and determine the exact amount of information a universal strategy needs about the history of a play and the evolution of the lookahead to be winning. In particular, we show that delay games with Borel winning conditions are determined with respect to universal strategies. Finally, we consider decidability problems, e.g., "Does a player have a universal winning strategy for delay games with a given winning condition?", for omega-regular and omega-context-free winning conditions.

Cite as

Felix Klein and Martin Zimmermann. What are Strategies in Delay Games? Borel Determinacy for Games with Lookahead. In 24th EACSL Annual Conference on Computer Science Logic (CSL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 41, pp. 519-533, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{klein_et_al:LIPIcs.CSL.2015.519,
  author =	{Klein, Felix and Zimmermann, Martin},
  title =	{{What are Strategies in Delay Games? Borel Determinacy for Games with Lookahead}},
  booktitle =	{24th EACSL Annual Conference on Computer Science Logic (CSL 2015)},
  pages =	{519--533},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-90-3},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{41},
  editor =	{Kreutzer, Stephan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2015.519},
  URN =		{urn:nbn:de:0030-drops-54354},
  doi =		{10.4230/LIPIcs.CSL.2015.519},
  annote =	{Keywords: Determinacy, Infinite Games, Delay Games, Borel Hierarchy}
}
  • Refine by Author
  • 2 Klein, Felix
  • 2 Schröder, Felix
  • 2 Zimmermann, Martin
  • 1 Bergold, Helena
  • 1 Bryne, Torleiv
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 2 Delay Games
  • 2 Infinite Games
  • 1 Borel Hierarchy
  • 1 Determinacy
  • 1 Empty Hexagon theorem
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 4 2024
  • 1 2015
  • 1 2016
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail