7 Search Results for "Marshall, Andrew M."


Document
Convex Consensus with Asynchronous Fallback

Authors: Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Convex Consensus (CC) allows a set of parties to agree on a value v inside the convex hull of their inputs with respect to a predefined abstract convexity notion, even in the presence of byzantine parties. In this work, we focus on achieving CC in the best-of-both-worlds paradigm, i.e., simultaneously tolerating at most t_s corruptions if communication is synchronous, and at most t_a ≤ t_s corruptions if it is asynchronous. Our protocol is randomized, which is a requirement under asynchrony, and we prove that it achieves optimal resilience. In the process, we introduce communication primitives tailored to the network-agnostic model. These are a deterministic primitive allowing parties to obtain intersecting views (Gather), and a randomized primitive leading to identical views (Agreement on a Core-Set). Our primitives provide stronger guarantees than previous counterparts, making them of independent interest.

Cite as

Andrei Constantinescu, Diana Ghinea, Roger Wattenhofer, and Floris Westermann. Convex Consensus with Asynchronous Fallback. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{constantinescu_et_al:LIPIcs.DISC.2024.15,
  author =	{Constantinescu, Andrei and Ghinea, Diana and Wattenhofer, Roger and Westermann, Floris},
  title =	{{Convex Consensus with Asynchronous Fallback}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.15},
  URN =		{urn:nbn:de:0030-drops-212411},
  doi =		{10.4230/LIPIcs.DISC.2024.15},
  annote =	{Keywords: convex consensus, network-agnostic protocols, agreement on a core-set}
}
Document
Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights

Authors: Erum Haris, Anthony G. Cohn, and John G. Stell

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Extracting spatial details from historical texts can be difficult, hindering our understanding of past landscapes. The study addresses this challenge by analyzing the Corpus of the Lake District Writing, focusing on the English Lake District region. We systematically link the theoretical notions from the core concepts of spatial information to provide basis for the problem domain. The conceptual foundation is further complemented with a spatial ontology and a custom gazetteer, allowing a formal and insightful semantic exploration of the massive unstructured corpus. The other contrasting side of the framework is the usage of LLMs for spatial relation extraction. We formulate prompts leveraging understanding of the LLMs of the intended task, curate a list of spatial relations representing the most recurring proximity or vicinity relations terms and extract semantic triples for the top five place names appearing in the corpus. We compare the extraction capabilities of three benchmark LLMs for a scholarly significant historical archive, representing their potential in a challenging and interdisciplinary research problem. Finally, the network comprising the semantic triples is enhanced by incorporating a gazetteer-based classification of the objects involved thus improving their spatial profiling.

Cite as

Erum Haris, Anthony G. Cohn, and John G. Stell. Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haris_et_al:LIPIcs.COSIT.2024.11,
  author =	{Haris, Erum and Cohn, Anthony G. and Stell, John G.},
  title =	{{Semantic Perspectives on the Lake District Writing: Spatial Ontology Modeling and Relation Extraction for Deeper Insights}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.11},
  URN =		{urn:nbn:de:0030-drops-208268},
  doi =		{10.4230/LIPIcs.COSIT.2024.11},
  annote =	{Keywords: spatial humanities, spatial narratives, ontology, large language models}
}
Document
Communication Complexity vs Randomness Complexity in Interactive Proofs

Authors: Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
In this work, we study the interplay between the communication from a verifier in a general private-coin interactive protocol and the number of random bits it uses in the protocol. Under worst-case derandomization assumptions, we show that it is possible to transform any I-round interactive protocol that uses ρ random bits into another one for the same problem with the additional property that the verifier’s communication is bounded by O(I⋅ ρ). Importantly, this is done with a minor, logarithmic, increase in the communication from the prover to the verifier and while preserving the randomness complexity. Along the way, we introduce a new compression game between computationally-bounded compressor and computationally-unbounded decompressor and a new notion of conditioned efficient distributions that may be of independent interest. Our solutions are based on a combination of perfect hashing and pseudorandom generators.

Cite as

Benny Applebaum, Kaartik Bhushan, and Manoj Prabhakaran. Communication Complexity vs Randomness Complexity in Interactive Proofs. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{applebaum_et_al:LIPIcs.ITC.2024.2,
  author =	{Applebaum, Benny and Bhushan, Kaartik and Prabhakaran, Manoj},
  title =	{{Communication Complexity vs Randomness Complexity in Interactive Proofs}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.2},
  URN =		{urn:nbn:de:0030-drops-205103},
  doi =		{10.4230/LIPIcs.ITC.2024.2},
  annote =	{Keywords: Interactive Proof Systems, Communication Complexity, Hash Functions, Pseudo-Random Generators, Compression}
}
Document
Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors: Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Cite as

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2024.14,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, Mahmut Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{14:1--14:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.14},
  URN =		{urn:nbn:de:0030-drops-204100},
  doi =		{10.4230/LIPIcs.CCC.2024.14},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit problems, abc-conjecture, closest vector problem}
}
Document
Accelerating ILP Solvers for Minimum Flow Decompositions Through Search Space and Dimensionality Reductions

Authors: Andreas Grigorjew, Fernando H. C. Dias, Andrea Cracco, Romeo Rizzi, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Given a flow network, the Minimum Flow Decomposition (MFD) problem is finding the smallest possible set of weighted paths whose superposition equals the flow. It is a classical, strongly NP-hard problem that is proven to be useful in RNA transcript assembly and applications outside of Bioinformatics. We improve an existing ILP (Integer Linear Programming) model by Dias et al. [RECOMB 2022] for DAGs by decreasing the solver’s search space using solution safety and several other optimizations. This results in a significant speedup compared to the original ILP, of up to 34× on average on the hardest instances. Moreover, we show that our optimizations apply also to MFD problem variants, resulting in speedups that go up to 219× on the hardest instances. We also developed an ILP model of reduced dimensionality for an MFD variant in which the solution path weights are restricted to a given set. This model can find an optimal MFD solution for most instances, and overall, its accuracy significantly outperforms that of previous greedy algorithms while being up to an order of magnitude faster than our optimized ILP.

Cite as

Andreas Grigorjew, Fernando H. C. Dias, Andrea Cracco, Romeo Rizzi, and Alexandru I. Tomescu. Accelerating ILP Solvers for Minimum Flow Decompositions Through Search Space and Dimensionality Reductions. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grigorjew_et_al:LIPIcs.SEA.2024.14,
  author =	{Grigorjew, Andreas and Dias, Fernando H. C. and Cracco, Andrea and Rizzi, Romeo and Tomescu, Alexandru I.},
  title =	{{Accelerating ILP Solvers for Minimum Flow Decompositions Through Search Space and Dimensionality Reductions}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.14},
  URN =		{urn:nbn:de:0030-drops-203792},
  doi =		{10.4230/LIPIcs.SEA.2024.14},
  annote =	{Keywords: Flow decomposition, Integer Linear Programming, Safety, RNA-seq, RNA transcript assembly, isoform}
}
Document
Knowledge Problems in Security Protocols: Going Beyond Subterm Convergent Theories

Authors: Saraid Dwyer Satterfield, Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
We introduce a new form of restricted term rewrite system, the graph-embedded term rewrite system. These systems, and thus the name, are inspired by the graph minor relation and are more flexible extensions of the well-known homeomorphic-embedded property of term rewrite systems. As a motivating application area, we consider the symbolic analysis of security protocols, and more precisely the two knowledge problems defined by the deduction problem and the static equivalence problem. In this field restricted term rewrite systems, such as subterm convergent ones, have proven useful since the knowledge problems are decidable for such systems. However, many of the same decision procedures still work for examples of systems which are "beyond subterm convergent". However, the applicability of the corresponding decision procedures to these examples must often be proven on an individual basis. This is due to the problem that they don't fit into an existing syntactic definition for which the procedures are known to work. Here we show that many of these systems belong to a particular subclass of graph-embedded convergent systems, called contracting convergent systems. On the one hand, we show that the knowledge problems are decidable for the subclass of contracting convergent systems. On the other hand, we show that the knowledge problems are undecidable for the class of graph-embedded systems.

Cite as

Saraid Dwyer Satterfield, Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Knowledge Problems in Security Protocols: Going Beyond Subterm Convergent Theories. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dwyersatterfield_et_al:LIPIcs.FSCD.2023.30,
  author =	{Dwyer Satterfield, Saraid and Erbatur, Serdar and Marshall, Andrew M. and Ringeissen, Christophe},
  title =	{{Knowledge Problems in Security Protocols: Going Beyond Subterm Convergent Theories}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.30},
  URN =		{urn:nbn:de:0030-drops-180148},
  doi =		{10.4230/LIPIcs.FSCD.2023.30},
  annote =	{Keywords: Term rewriting, security protocols, verification}
}
Document
Combined Hierarchical Matching: the Regular Case

Authors: Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen

Published in: LIPIcs, Volume 228, 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)


Abstract
Matching algorithms are often central sub-routines in many areas of automated reasoning. They are used in areas such as functional programming, rule-based programming, automated theorem proving, and the symbolic analysis of security protocols. Matching is related to unification but provides a somewhat simplified problem. Thus, in some cases, we can obtain a matching algorithm even if the unification problem is undecidable. In this paper we consider a hierarchical approach to constructing matching algorithms. The hierarchical method has been successful for developing unification algorithms for theories defined over a constructor sub-theory. We show how the approach can be extended to matching problems which allows for the development, in a modular way, of hierarchical matching algorithms. Here we focus on regular theories, where both sides of each equational axiom have the same set of variables. We show that the combination of two hierarchical matching algorithms leads to a hierarchical matching algorithm for the union of regular theories sharing only a common constructor sub-theory.

Cite as

Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen. Combined Hierarchical Matching: the Regular Case. In 7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 228, pp. 6:1-6:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{erbatur_et_al:LIPIcs.FSCD.2022.6,
  author =	{Erbatur, Serdar and Marshall, Andrew M. and Ringeissen, Christophe},
  title =	{{Combined Hierarchical Matching: the Regular Case}},
  booktitle =	{7th International Conference on Formal Structures for Computation and Deduction (FSCD 2022)},
  pages =	{6:1--6:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-233-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{228},
  editor =	{Felty, Amy P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2022.6},
  URN =		{urn:nbn:de:0030-drops-162879},
  doi =		{10.4230/LIPIcs.FSCD.2022.6},
  annote =	{Keywords: Matching, combination problem, equational theories}
}
  • Refine by Author
  • 2 Erbatur, Serdar
  • 2 Marshall, Andrew M.
  • 2 Ringeissen, Christophe
  • 1 Applebaum, Benny
  • 1 Bhushan, Kaartik
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Automated reasoning
  • 2 Theory of computation → Equational logic and rewriting
  • 1 Applied computing → Bioinformatics
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Artificial intelligence
  • Show More...

  • Refine by Keyword
  • 1 Communication Complexity
  • 1 Compression
  • 1 Flow decomposition
  • 1 Hash Functions
  • 1 Integer Linear Programming
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 5 2024
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail